82 research outputs found

    Planetesimal formation during protoplanetary disk buildup

    Full text link
    Models of dust coagulation and subsequent planetesimal formation are usually computed on the backdrop of an already fully formed protoplanetary disk model. At the same time, observational studies suggest that planetesimal formation should start early, possibly even before the protoplanetary disk is fully formed. In this paper, we investigate under which conditions planetesimals already form during the disk buildup stage, in which gas and dust fall onto the disk from its parent molecular cloud. We couple our earlier planetesimal formation model at the water snow line to a simple model of disk formation and evolution. We find that under most conditions planetesimals only form after the buildup stage when the disk becomes less massive and less hot. However, there are parameters for which planetesimals already form during the disk buildup. This occurs when the viscosity driving the disk evolution is intermediate (αv∼10−3−10−2\alpha_v \sim 10^{-3}-10^{-2}) while the turbulent mixing of the dust is reduced compared to that (αt≲10−4\alpha_t \lesssim 10^{-4}), and with the assumption that water vapor is vertically well-mixed with the gas. Such αt≪αv\alpha_t \ll \alpha_v scenario could be expected for layered accretion, where the gas flow is mostly driven by the active surface layers, while the midplane layers, where most of the dust resides, are quiescent.Comment: 6 pages, 5 figures, accepted for publication in A&A, minor changes due to language editio

    Can dust coagulation trigger streaming instability?

    Full text link
    Streaming instability can be a very efficient way of overcoming growth and drift barriers to planetesimal formation. However, it was shown that strong clumping, which leads to planetesimal formation, requires a considerable number of large grains. State-of-the-art streaming instability models do not take into account realistic size distributions resulting from the collisional evolution of dust. We investigate whether a sufficient quantity of large aggregates can be produced by sticking and what the interplay of dust coagulation and planetesimal formation is. We develop a semi-analytical prescription of planetesimal formation by streaming instability and implement it in our dust coagulation code based on the Monte Carlo algorithm with the representative particles approach. We find that planetesimal formation by streaming instability may preferentially work outside the snow line, where sticky icy aggregates are present. The efficiency of the process depends strongly on local dust abundance and radial pressure gradient, and requires a super-solar metallicity. If planetesimal formation is possible, the dust coagulation and settling typically need ~100 orbits to produce sufficiently large and settled grains and planetesimal formation lasts another ~1000 orbits. We present a simple analytical model that computes the amount of dust that can be turned into planetesimals given the parameters of the disk model.Comment: 12 pages, 6 figures, 1 table, accepted for publication in A&A (minor corrections with respect to v1

    Self-Sustaining Vortices in Protoplanetary Disks: Setting the Stage for Planetary System Formation

    Get PDF
    The core accretion scenario of planet formation assumes that planetesimals and planetary embryos are formed during the primordial, gaseous phases of the protoplanetary disk. However, how the dust particles overcome the traditional growth barriers is not well understood. The recently proposed viscous ring-instability may explain the concentric rings observed in protoplanetary disks by assuming that the dust grains can reduce the gas conductivity, which can weaken the magneto-rotational instability. We present an analysis of this model with the help of GPU-based numerical hydrodynamic simulations of coupled gas and dust in the thin-disk limit. During the evolution of the disk the dusty rings become Rossby unstable and break up into a cascade of small-scale vortices. The vortices form secularly stable dusty structures, which could be sites of planetesimal formation by the streaming instability as well as direct gravitational collapse. The phenomenon of self-sustaining vortices is consistent with observational constraints of exoplanets and sets a favorable environment for planetary system formation.Comment: 10 pages, accepted for publication in MNRA

    A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap

    Get PDF
    We combined hydrodynamical simulations of planet-disk interactions with dust evolution models that include coagulation and fragmentation of dust grains over a large range of radii and derived observational properties using radiative transfer calculations. We studied the role of the snow line in the survival of the inner disk of transition disks. Inside the snow line, the lack of ice mantles in dust particles decreases the sticking efficiency between grains. As a consequence, particles fragment at lower collision velocities than in regions beyond the snow line. This effect allows small particles to be maintained for up to a few Myrs within the first astronomical unit. These particles are closely coupled to the gas and do not drift significantly with respect to the gas. For lower mass planets (1MJupM_{\rm{Jup}}), the pre-transition appearance can be maintained even longer because dust still trickles through the gap created by the planet, moves invisibly and quickly in the form of relatively large grains through the gap, and becomes visible again as it fragments and gets slowed down inside of the snow line. The global study of dust evolution of a disk with an embedded planet, including the changes of the dust aerodynamics near the snow line, can explain the concentration of millimetre-sized particles in the outer disk and the survival of the dust in the inner disk if a large dust trap is present in the outer disk. This behaviour solves the conundrum of the combination of both near-infrared excess and ring-like millimetre emission observed in several transition disks.Comment: Accepted for publication in A&A (including acknowledgments

    Long-term infrared variability of the UX Ori-type star SV Cep

    Get PDF
    We investigate the long-term optical-infrared variability of SV Cep, and explain it in the context of an existing UX Ori (UXOR) model. A 25-month monitoring programme was completed with the Infrared Space Observatory in the 3.3-100 um wavelength range. Following a careful data reduction, the infrared light curves were correlated with the variations of SV Cep in the V-band. A remarkable correlation was found between the optical and the far-infrared light curves. In the mid-infrared regime the amplitude of variations is lower, with a hint for a weak anti-correlation with the optical changes. In order to interpret the observations, we modelled the spectral energy distribution of SV Cep assuming a self-shadowed disc with a puffed-up inner rim, using a 2-dimensional radiative transfer code. We found that modifying the height of the inner rim, the wavelength-dependence of the long-term optical-infrared variations is well reproduced, except the mid-infrared domain. The origin of variation of the rim height might be fluctuation in the accretion rate in the outer disc. In order to model the mid-infrared behaviour we tested to add an optically thin envelope to the system, but this model failed to explain the far-infrared variability. Infrared variability is a powerful tool to discriminate between models of the circumstellar environment. The proposed mechanism of variable rim height may not be restricted to UXOR stars, but might be a general characteristic of intermediate-mass young stars.Comment: 11 pages, 9 figures, accepted for publiction in Monthly Notices of the Royal Astronomical Societ

    High-resolution spectroscopic view of planet formation sites

    Full text link
    Theories of planet formation predict the birth of giant planets in the inner, dense, and gas-rich regions of the circumstellar disks around young stars. These are the regions from which strong CO emission is expected. Observations have so far been unable to confirm the presence of planets caught in formation. We have developed a novel method to detect a giant planet still embedded in a circumstellar disk by the distortions of the CO molecular line profiles emerging from the protoplanetary disk's surface. The method is based on the fact that a giant planet significantly perturbs the gas velocity flow in addition to distorting the disk surface density. We have calculated the emerging molecular line profiles by combining hydrodynamical models with semianalytic radiative transfer calculations. Our results have shown that a giant Jupiter-like planet can be detected using contemporary or future high-resolution near-IR spectrographs such as VLT/CRIRES or ELT/METIS. We have also studied the effects of binarity on disk perturbations. The most interesting results have been found for eccentric circumprimary disks in mid-separation binaries, for which the disk eccentricity - detectable from the asymmetric line profiles - arises from the gravitational effects of the companion star. Our detailed simulations shed new light on how to constrain the disk kinematical state as well as its eccentricity profile. Recent findings by independent groups have shown that core-accretion is severely affected by disk eccentricity, hence detection of an eccentric protoplanetary disk in a young binary system would further constrain planet formation theories.Comment: IAU Symposium 276 (contributed talk

    Impact splash chondrule formation during planetesimal recycling

    Full text link
    Chondrules are the dominant bulk silicate constituent of chondritic meteorites and originate from highly energetic, local processes during the first million years after the birth of the Sun. So far, an astrophysically consistent chondrule formation scenario, explaining major chemical, isotopic and textural features, remains elusive. Here, we examine the prospect of forming chondrules from planetesimal collisions. We show that intensely melted bodies with interior magma oceans became rapidly chemically equilibrated and physically differentiated. Therefore, collisional interactions among such bodies would have resulted in chondrule-like but basaltic spherules, which are not observed in the meteoritic record. This inconsistency with the expected dynamical interactions hints at an incomplete understanding of the planetary growth regime during the protoplanetary disk phase. To resolve this conundrum, we examine how the observed chemical and isotopic features of chondrules constrain the dynamical environment of accreting chondrite parent bodies by interpreting the meteoritic record as an impact-generated proxy of planetesimals that underwent repeated collision and reaccretion cycles. Using a coupled evolution-collision model we demonstrate that the vast majority of collisional debris feeding the asteroid main belt must be derived from planetesimals which were partially molten at maximum. Therefore, the precursors of chondrite parent bodies either formed primarily small, from sub-canonical aluminum-26 reservoirs, or collisional destruction mechanisms were efficient enough to shatter planetesimals before they reached the magma ocean phase. Finally, we outline the window in parameter space for which chondrule formation from planetesimal collisions can be reconciled with the meteoritic record and how our results can be used to further constrain early solar system dynamics.Comment: 20 pages, 11 figures, 2 tables; accepted for publication in Icarus; associated blog article at goo.gl/5bDqG
    • …
    corecore