11 research outputs found

    FCNC Processes in the Littlest Higgs Model with T-Parity: an Update

    Full text link
    We update our 2006-2007 results for FCNC processes in the Littlest Higgs model with T-parity (LHT). The removal of the logarithmic UV cutoff dependence in our previous results through a new contribution to the Z^0-penguin diagrams identified by Goto et al. and del Aguila et al., while making the deviations from the SM expectations in the quark sector less spectacular, still allows for sizable new physics effects in K -> pi nu anti-nu and K_L -> pi^0 l^+ l^- decays and in the CP-asymmetry S_{psi phi} with the latter unaffected by the new contribution. We extend our analysis by a study of the fine-tuning required to fit the data on epsilon_K and by the inclusion of the decay K_L -> mu^+ mu^-. A number of correlations can distinguish this model from the custodially protected Randall-Sundrum model analysed recently. We also reconsider lepton flavour violating decays, including now a discussion of fine-tuning. While the l_i -> l_j gamma decays are unaffected by the removal of the logarithmic cutoff dependence, the branching ratios for decays with three leptons in the final state, like mu -> 3 e are lowered by almost an order of magnitude. In spite of this, the pattern of lepton flavour violation in the LHT model can still be distinguished from the one in supersymmetric models.Comment: 30 pages, 14 figures, 5 tables. Clarifying comments added, matches published versio

    Ganymede MHD Model: Magnetospheric Context for Juno's PJ34 Flyby

    Full text link
    On June 7th, 2021 the Juno spacecraft visited Ganymede and provided the first in situ observations since Galileo's last flyby in 2000. The measurements obtained along a one-dimensional trajectory can be brought into global context with the help of three-dimensional magnetospheric models. Here we apply the magnetohydrodynamic model of Duling et al. (2014) to conditions during the Juno flyby. In addition to the global distribution of plasma variables we provide mapping of Juno's position along magnetic field lines, Juno's distance from closed field lines and detailed information about the magnetic field's topology. We find that Juno did not enter the closed field line region and that the boundary between open and closed field lines on the surface matches the poleward edges of the observed auroral ovals. To estimate the sensitivity of the model results, we carry out a parameter study with different upstream plasma conditions and other model parameters

    The Impact of a 4th Generation on Mixing and CP Violation in the Charm System

    Full text link
    We study D0-D0 mixing in the presence of a fourth generation of quarks. In particular, we calculate the size of the allowed CP violation which is found at the observable level well beyond anything possible with CKM dynamics. We calculate the semileptonic asymmetry a_SL and the mixing induced CP asymmetry eta_fS_f which are correlated with each other. We also investigate the correlation of eta_fS_f with a number of prominent observables in other mesonic systems like epsilon'/epsilon, Br(K_L -> pi0 nu nu), Br(K+ -> pi+ nu nu), Br(B_s ->mu+ mu-), Br(B_d -> mu+ mu-) and finally S_psi phi in the B_s system. We identify a clear pattern of flavour and CP violation predicted by the SM4 model: While simultaneous large 4G effects in the K and D systems are possible, accompanying large NP effects in the B_d system are disfavoured. However this behaviour is not as pronounced as found for the LHT and RSc models. In contrast to this, sizeable CP violating effects in the B_s system are possible unless extreme effects in eta_fS_f are found, and Br(B_s ->mu+ mu-) can be strongly enhanced regardless of the situation in the D system. We find that, on the other hand, S_psi phi > 0.2 combined with the measured epsilon'/epsilon significantly diminishes 4G effects within the D system.Comment: 22 pages, 23 figures, v2 (references added

    Alternating North‐South Brightness Ratio of Ganymede's Auroral Ovals: Hubble Space Telescope Observations Around the Juno PJ34 Flyby

    Full text link
    peer reviewedWe report results of Hubble Space Telescope observations from Ganymede's orbitally trailing side which were taken around the flyby of the Juno spacecraft on 7 June 2021. We find that Ganymede's northern and southern auroral ovals alternate in brightness such that the oval facing Jupiter's magnetospheric plasma sheet is brighter than the other one. This suggests that the generator that powers Ganymede's aurora is the momentum of the Jovian plasma sheet north and south of Ganymede's magnetosphere. Magnetic coupling of Ganymede to the plasma sheet above and below the moon causes asymmetric magnetic stresses and electromagnetic energy fluxes ultimately powering the auroral acceleration process. No clear statistically significant timevariability of the auroral emission on short time scales of 100s could be resolved. We show that electron energy fluxes of several tens of mW m−2 are required for its OI 1,356 Å emission making Ganymede a very poor auroral emitter

    FCNC PROCESSES IN THE LITTLEST HIGGS MODEL WITH T-PARITY: AN UPDATE

    No full text
    We update our 2006-2007 results for FCNC processes in the Littlest Higgs model with T-parity (LHT). The removal of the logarithmic UV cutoff dependence in our previous results through a new contribution to the Z(0)-penguin diagrams identified by Goto et al. and del Aguila et al., while making the deviations from the SM expectations in the quark sector less spectacular, still allows for sizable new physics effects in K -> pi nu(nu) over bar and K(L) -> pi(0)l(+)l(-) decays and in the CP-asymmetry S(psi phi) with the latter unaffected by the new contribution. We extend our analysis by a study of the fine-tuning required to fit the data on epsilon(K) and by the inclusion of the decay K(L) -> mu(+)mu(-). A number of correlations can distinguish this model from the custodially protected Randall-Sundrum model analysed recently. We also reconsider lepton flavour violating decays, including now a discussion of fine-tuning. While the l(i) -> l(j)gamma decays are unaffected by the removal of the logarithmic cutoff dependence, the branching ratios for decays with three leptons in the final state, like mu -> 3e are lowered by almost an order of magnitude. In spite of this, the pattern of lepton flavour violation in the LHT model can still be distinguished from the one in supersymmetric models

    FCNC Processes in the Littlest Higgs Model with T-Parity: a 2009 Look

    No full text
    We update our 2006-2007 results for FCNC processes in the Littlest Higgs model with T-parity (LHT). The removal of the logarithmic UV cutoff dependence in our previous results through a new contribution to the Z^0-penguin diagrams identified by Goto et al. and del Aguila et al., while making the deviations from the SM expectations in the quark sector less spectacular, still allows for sizable new physics effects in K -> pi nu anti-nu and K_L -> pi^0 l^+ l^- decays and in the CP-asymmetry S_{psi phi} with the latter unaffected by the new contribution. We extend our analysis by a study of the fine-tuning required to fit the data on epsilon_K and by the inclusion of the decay K_L -> mu^+ mu^-. A number of correlations can distinguish this model from the custodially protected Randall-Sundrum model analysed recently. We also reconsider lepton flavour violating decays, including now a discussion of fine-tuning. While the l_i -> l_j gamma decays are unaffected by the removal of the logarithmic cutoff dependence, the branching ratios for decays with three leptons in the final state, like mu -> 3 e are lowered by almost an order of magnitude. In spite of this, the pattern of lepton flavour violation in the LHT model can still be distinguished from the one in supersymmetric models

    Ganymede MHD Model: Magnetospheric Context for Juno's PJ34 Flyby

    No full text
    AbstractOn 7 June 2021 the Juno spacecraft visited Ganymede and provided the first in situ observations since Galileo's last flyby in 2000. The measurements obtained along a one‐dimensional trajectory can be brought into global context with the help of three‐dimensional magnetospheric models. Here we apply the magnetohydrodynamic model of Duling et al. (2014, https://doi.org/10.1002/2013ja019554) to conditions during the Juno flyby. In addition to the global distribution of plasma variables we provide mapping of Juno's position along magnetic field lines, Juno's distance from closed field lines and detailed information about the magnetic field's topology. We find that Juno did not enter the closed field line region and that the boundary between open and closed field lines on the surface matches the poleward edges of the observed auroral ovals. To estimate the sensitivity of the model results, we carry out a parameter study with different upstream plasma conditions and other model parameters.Plain Language Summary: In June 2021 the Juno spacecraft flew close to Ganymede, the largest moon of Jupiter, and explored its magnetic and plasma environment. Ganymede's own magnetic field forms a magnetosphere, which is embedded in Jupiter's large‐scale magnetosphere, and which is unique in the solar system. The vicinity of Ganymede is separated into regions that differ in whether the magnetic field lines connect to Ganymede's surface at both or one end or not at all. These regions are deformed by the plasma flow and determine the state of the plasma and the location of Ganymede's aurora. We perform simulations of the plasma flow and interaction to reveal the three‐dimensional structure of Ganymede's magnetosphere during the flyby of Juno. The model provides the three‐dimensional state of the plasma and magnetic field, predicted locations of the aurora and the geometrical magnetic context for Juno's trajectory. These results are helpful for the interpretation of the in situ and remote sensing obtained during the flyby. We find that Juno did not cross the region with field lines that connect to Ganymede's surface at both ends. Considering possible values for unknown model parameters, we also estimate the uncertainty of the model results.Key Points: Our magnetohydrodynamic model illustrates the state of Ganymede's magnetosphere during Juno's flyby and locates its trajectory outside closed field lines The location of the open‐closed‐field line‐boundary is predicted and matches the poleward edges of the aurora as observed by Juno We investigate model uncertainties caused by incomplete knowledge of upstream conditions and other parameters H2020 European Research Council http://dx.doi.org/10.13039/100010663University of Iowa http://dx.doi.org/10.13039/100008893National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104Southwest Research Institute http://dx.doi.org/10.13039/100011766http://www.netpurgatory.com/zeusmp.htmlhttps://doi.org/10.17189/1519711https://doi.org/10.5281/zenodo.7096938https://doi.org/10.5281/zenodo.710533

    UVS Observations of Ganymede's Aurora During Juno Orbits 34 and 35

    Full text link
    Juno UVS, an ultraviolet spectrograph sensitive to wavelengths 68-210 nm, performed unique observations of Ganymede’s aurora on the approach to Juno’s 34th and 35th perijoves (PJ). The combination of Juno’s 2 rpm spin rate, UVS’ 7.2° long “dog-bone” shaped slit, and the UVS scan mirror allows for the recording of 7.2° wide scans across Ganymede’s disk every 30 s. Through the wide slits we are able to capture integration times of 17 ms per spin for each resolution element in the observed swath. For the PJ34 Ganymede encounter on June 7, 2021 at 16:56:08 UTC, Juno UVS captured data during 16:52-16:56-17:04 UTC at altitudes varying from 3262-1046-6820 km. Over this time period Ganymede’s angular diameter varied from 54°-93°-33° on the sky, while the nadir solar phase angle varied from 149°-102°-25°. Juno UVS achieves a spatial resolution of ≈0.2° giving a best-case nadir spatial resolution of 4 km (0.08° Ganymede latitude). The PJ34 UVS data provide a sparse, but high-resolution look at Ganymede’s aurora, and can be used to locate the last closed field lines to an accuracy of about one degree of latitude. Our data show not only a narrow auroral curtain of emission in both the north and south, but also fainter emission extending from the auroral curtains towards the equator on Ganymede’s leading hemisphere. Additionally, the auroral curtains appear more uniform than expected from previous HST observations that show more patchy and variable emissions from observation to observation. For the PJ35 Ganymede encounter on July 20, 2021 at 16:48:30 UTC, Juno UVS captured data during 16:33-16:48-17:27 UTC. The increased PJ35 observational period relative to the PJ34 encounter is due to the larger range of the event, 52,717-49,999-64,252 km, making the angular extent of Ganymede only 5.6°-5.8-4.6° on the sky (at a nadir solar phase angle 99°-81°-43°) and the best-case nadir spatial resolution 175 km (comparable to HST imagery). UVS not only spatially resolved Ganymede, but also spectrally separates the prominent 130.4 and 135.6 nm O auroral emissions, and their brightness ratio, diagnostic of their auroral excitation mechanisms

    Alternating North‐South Brightness Ratio of Ganymede's Auroral Ovals: Hubble Space Telescope Observations Around the Juno PJ34 Flyby

    No full text
    We report results of Hubble Space Telescope observations from Ganymede's orbitally trailing side which were taken around the flyby of the Juno spacecraft on 7 June 2021. We find that Ganymede's northern and southern auroral ovals alternate in brightness such that the oval facing Jupiter's magnetospheric plasma sheet is brighter than the other one. This suggests that the generator that powers Ganymede's aurora is the momentum of the Jovian plasma sheet north and south of Ganymede's magnetosphere. Magnetic coupling of Ganymede to the plasma sheet above and below the moon causes asymmetric magnetic stresses and electromagnetic energy fluxes ultimately powering the auroral acceleration process. No clear statistically significant timevariability of the auroral emission on short time scales of 100s could be resolved. We show that electron energy fluxes of several tens of mW m−2 are required for its OI 1,356 Å emission making Ganymede a very poor auroral emitter.Plain Language Summary: Jupiter's moon Ganymede is the largest moon in the solar system and the only known moon with an intrinsic magnetic field and two auroral ovals around its north and south poles. Earth also possesses two auroral ovals, which are bands of emission around its poles. This emission is also referred to as northern and southern lights. We use the Hubble Space Telescope to observe Ganymede's aurora around the time when NASA's Juno spacecraft had a close flyby at Ganymede. We find that the brightness of the northern and southern ovals alternate in intensity with a period of 10 hr. Additionally, we derive that an energy flux of several tens of milli‐Watt per square meter is necessary to power the auroral emission. This energy flux comes from energetic electrons accelerated in the vicinity of Ganymede.Key Points: Hubble Space Telescope observations of Ganymede's orbitally trailing hemisphere on 7 June 2021 in support of Juno flyby. Brightness ratio of northern and southern auroral ovals oscillates such that the oval facing the Jovian plasma sheet is brighter. Oscillation suggests the aurora is driven by magnetic stresses coupling the moon's magnetic field to the surrounding Jovian plasma sheet.European Research Council, ERCNASAhttp://archive.stsci.edu/hst
    corecore