70 research outputs found

    Design and commission of an experimental test rig to apply a full-scale pressure load on composite sandwich panels representative of aircraft secondary structure

    No full text
    This paper describes the design of a test rig, which is used to apply a representative pressure load to a full-scale composite sandwich secondary aircraft structure. A generic panel was designed with features to represent those in the composite sandwich secondary aircraft structure. To provide full-field strain data from the panels, the test rig was designed for use with optical measurement techniques such as thermoelastic stress analysis (TSA) and digital image correlation (DIC). TSA requires a cyclic load to be applied to a structure for the measurement of the strain state; therefore, the test rig has been designed to be mounted on a standard servo-hydraulic test machine. As both TSA and DIC require an uninterrupted view of the surface of the test panel, an important consideration in the design is facilitating the optical access for the two techniques. To aid the test rig design a finite element (FE) model was produced. The model provides information on the deflections that must be accommodated by the test rig, and ensures that the stress and strain levels developed in the panel when loaded in the test rig would be sufficient for measurement using TSA and DIC. Finally, initial tests using the test rig have shown it to be capable of achieving the required pressure and maintaining a cyclic load. It was also demonstrated that both TSA and DIC data can be collected from the panels under load, which are used to validate the stress and deflection derived from the FE model

    Full-scale performance assessment of aircraft secondary sandwich structure using thermoelastic stress analysis

    No full text
    The use of resin film infusion (RFI) has been proven to reduce the cost of production of aircraft secondary sandwich structure. In this paper thermoelastic stress analysis (TSA) is used to assess the performance of full scale aircraft sandwich structure panels produced using both the conventional autoclave process and RFI. Finite element (FE) models of both panel types are developed and TSA is used to validate the models

    A review of residual stress analysis using thermoelastic techniques

    No full text
    Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis that is based on infra-red thermography. The technique has proved to be extremely effective for studying elastic stress fields and is now well established. It is based on the measurement of the temperature change that occurs as a result of a stress change. As residual stress is essentially a mean stress it is accepted that the linear form of the TSA relationship cannot be used to evaluate residual stresses. However, there are situations where this linear relationship is not valid or departures in material properties due to manufacturing procedures have enabled evaluations of residual stresses. The purpose of this paper is to review the current status of using a TSA based approach for the evaluation of residual stresses and to provide some examples of where promising results have been obtained

    Microstructural Assessment of 316L Stainless Steel Using Infrared Thermography Based Measurement of  Energy Dissipation Arising from Cyclic Loading

    Get PDF
    A procedure is developed that evaluates the energy dissipated from a material subject to cyclic loading and enables identification of the difference in material microstructure. It is demonstrated that the dissipated energy can be derived from specimens loaded in the elastic region using temperature measurements obtained by infrared thermography. To obtain accurate values of the small temperature changes resulting from the intrinsic dissipation below the yield point, a key part of the procedure is to eliminate the effect of external heat sources and sinks from the vicinity of the test specimen under investigation. To this end, a chamber was designed to minimise the external radiation whilst allowing the specimens to be cyclically loaded; the configuration of the chamber is described, alongside its integration into the procedure. A reference specimen was specifically introduced in the chamber to take into account the thermal exchanges between the specimen and the chamber environment. A data processing procedure, based on the thermomechanical heat diffusion equation, is applied to enable the dissipated energy to be derived from the temperature measurements. It is established that quantifying the amount of energy dissipation provides an opportunity to identify the material condition. The procedure is demonstrated on specimens made from 316L stainless steel containing a range of microstructures produced by different heat treatments. It is shown that the dissipative energy is dependent on the microstructure and that the dissipative source can be identified using the experimental procedure

    Strain monitoring of tapestries: results of a three-year research project

    Get PDF
    The outcomes of an interdisciplinary research project between conservators and engineers investigating the strain experienced by different areas of a tapestry are described. Two techniques were used: full-field monitoring using digital image correlation (DIC) and point measurements using optical fibre sensors. Results showed that it is possible to quantify the global strain across a discrete area of a tapestry using DIC; optical fibre and other sensors were used to validate the DIC. Strain maps created by the DIC depict areas of high and low strain and can be overlaid on images of the tapestry, creating a useful visual tool for conservators, custodians and the general public. DIC identifies areas of high strain not obvious to the naked eye. The equipment can be used in situ in a historic house. In addition the work demonstrated the close relationship between relative humidity and strain

    Thermoelastic Investigation of Damage Evolution in Small Stainless Steel Pipework

    Full text link
    This paper describes work on damage studies in small cold worked pipe sections. The effect of material heat treatment on the sensitivity of the thermoelastic constant to exposure to plastic strain is assessed. It is shown that strain hardening plays an important role in modifying the thermoelastic constant. X-ray computed tomography has been use to assess the geometry of the deformed cross-section of pipe and to identify the presence of damage. Finally the potential of thermoelastic stress analysis for damage assessment in the pipe work is established

    Measurements of stress-optic coefficient and Young's modulus in PMMA fibers drawn under different conditions

    Get PDF
    We have systematically measured the differential stress-optic coefficient, ΔC, and Young's modulus, E, in a number of PMMA fibers drawn with different stress, ranging from 2 up to 27 MPa. Effect of temperature annealing on those parameters was also investigated. ΔC was determined in transverse illumination by measuring the dependence of birefringence on additional axial stress applied to the fiber. Our results show that ΔC in PMMA fibers has a negative sign and ranges from -4.5 to -1.5×10-12 Pa -1 depending on the drawing stress. Increase of the drawing stress results in greater initial fiber birefringence and lower ΔC. The dependence of ΔC and initial birefringence upon drawing stress is nonlinear and gradually saturates for higher drawing stress. Moreover, we find that ΔC is linearly proportional to initial fiber birefringence and that annealing the fiber has no impact on the slope of this dependence. On the other hand, no clear dependence was observed between the fiber drawing stress and the Young's modulus of the fibers as measured using microscopic digital image correlation with the fibers tensioned using an Instron tension tester

    Application of Imaging Techniques to Determine the Post-Yield Behaviour of the Heterogeneous Microstructure of Friction Stir Welds

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-09-05, accepted 2021-04-12, registration 2021-04-12, pub-electronic 2021-04-21, online 2021-04-21, pub-print 2021-07Publication status: PublishedAbstract: Background: Friction Stir Welding (FSW) causes intense plastic deformation and consequent thermomechanical interactions resulting in a localised heterogeneous microstructure. To understand the weld mechanical behaviour, it is necessary to identify each microstructural sub-region in the weld. Objective: Determine the relationship between the local microstructure and mechanical behaviour of the different microstructural regions in a FSW. Methods: Scanning electron microscopy (SEM) identified the microstructural sub-regions of an FSW joint. A novel High-Resolution Digital Image Correlation (HR-DIC) methodology enabled the determination of full-field strain response to provide the mechanical behaviour of the FSW sub-regions. X-ray computed tomography (CT) identified the geometry of the FSW and material composition. Results: The grain morphology in the FSW varied in the stir zone with a fine grain structure in the weld nugget and larger grains in the thermomechanical affected zone (TMAZ); the grains were larger in the retreating side (RS) compared to the advancing side (AS). Tungsten deposits were found in the weld nugget and attributed to tool wear. The mechanical properties of the weld subregions showed that the material in the stir zone had a greater yield strength than the base material and the RS of the FSW was much more ductile than the weld nugget and the AS side. The tungsten distributions in the stir zone correlated with the local mechanical behaviour. Conclusions: A novel methodology is developed that combines microstructural observations with HR-DIC enabling, for the first time, the FSW sub-region mechanical behaviour, to be related to the local grain morphology and inclusions caused by tool wear
    • …
    corecore