280 research outputs found

    Assessment of foam fracture in sandwich beams using thermoelastic stress analysis

    No full text
    Thermoelastic Stress Analysis (TSA) has been well established for determining crack-tip parameters in metallic materials. This paper examines its ability to determine accurately the crack-tip parameters for PVC foam used in sandwich structures

    Structure of the Alkali-metal-atom-Strontium molecular ions: towards photoassociation and formation of cold molecular ions

    Full text link
    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a Strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging cold atom and cold ion traps, possible paths for radiative charge exchange, photoassociation of a cold Lithium or Rubidium atom and a Strontium ion are discussed, as well as the formation of stable molecular ions

    Calculation of accurate permanent dipole moments of the lowest 1,3ÎŁ+^{1,3} \Sigma^+ states of heteronuclear alkali dimers using extended basis sets

    Full text link
    The obtention of ultracold samples of dipolar molecules is a current challenge which requires an accurate knowledge of their electronic properties to guide the ongoing experiments. In this paper, we systematically investigate the ground state and the lowest triplet state of mixed alkali dimers (involving Li, Na, K, Rb, Cs) using a standard quantum chemistry approach based on pseudopotentials for atomic core representation, gaussian basis sets, and effective terms for core polarization effects. We emphasize on the convergence of the results for permanent dipole moments regarding the size of the gaussian basis set, and we discuss their predicted accuracy by comparing to other theoretical calculations or available experimental values. We also revisit the difficulty to compare computed potential curves among published papers, due to the differences in the modelization of core-core interaction.Comment: accepted to J. Chem. Phy

    Strain monitoring of tapestries: results of a three-year research project

    Get PDF
    The outcomes of an interdisciplinary research project between conservators and engineers investigating the strain experienced by different areas of a tapestry are described. Two techniques were used: full-field monitoring using digital image correlation (DIC) and point measurements using optical fibre sensors. Results showed that it is possible to quantify the global strain across a discrete area of a tapestry using DIC; optical fibre and other sensors were used to validate the DIC. Strain maps created by the DIC depict areas of high and low strain and can be overlaid on images of the tapestry, creating a useful visual tool for conservators, custodians and the general public. DIC identifies areas of high strain not obvious to the naked eye. The equipment can be used in situ in a historic house. In addition the work demonstrated the close relationship between relative humidity and strain

    Photoassociative creation of ultracold heteronuclear 6Li40K* molecules

    Full text link
    We investigate the formation of weakly bound, electronically excited, heteronuclear 6Li40K* molecules by single-photon photoassociation in a magneto-optical trap. We performed trap loss spectroscopy within a range of 325 GHz below the Li(2S_(1/2))+K(4P_(3/2)) and Li(2S_(1/2))+K(4P_(1/2)) asymptotic states and observed more than 60 resonances, which we identify as rovibrational levels of 7 of 8 attractive long-range molecular potentials. The long-range dispersion coefficients and rotational constants are derived. We find large molecule formation rates of up to ~3.5x10^7s^(-1), which are shown to be comparable to those for homonuclear 40K_2*. Using a theoretical model we infer decay rates to the deeply bound electronic ground-state vibrational level X^1\Sigma^+(v'=3) of ~5x10^4s^(-1). Our results pave the way for the production of ultracold bosonic ground-state 6Li40K molecules which exhibit a large intrinsic permanent electric dipole moment.Comment: 6 pages, 4 figures, submitted to EP

    Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate

    Full text link
    The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of RAIRS and temperature-programmed desorption spectra of O2 and O3 produced via two pathways: O + O and O2 + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O2 + O reactions is 150 K/kb. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley Rideal nor the Hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O3 formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O3 is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO2 and H2O in the ices.Comment: 28 pages, 14 figure

    KRb Feshbach Resonances: Modeling the interatomic potential

    Get PDF
    We have observed 28 heteronuclear Feshbach resonances in 10 spin combinations of the hyperfine ground states of a 40K 87Rb mixture. The measurements were performed by observing the loss rates from an atomic mixture at magnetic fields between 0 and 700 G. This data was used to significantly refine an interatomic potential derived from molecular spectroscopy, yielding a highly consistent model of the KRb interaction. Thus, the measured resonances can be assigned to the corresponding molecular states. In addition, this potential allows for an accurate calculation of the energy differences between highly excited levels and the rovibrational ground level. This information is of particular relevance for the formation of deeply bound heteronuclear molecules. Finally, the model is used to predict Feshbach resonances in mixtures of 87Rb combined with 39K or 41K.Comment: 4 pages, 3 figure

    Influence of a Feshbach resonance on the photoassociation of LiCs

    Full text link
    We analyse the formation of ultracold 7Li133Cs molecules in the rovibrational ground state through photoassociation into the B1Pi state, which has recently been reported [J. Deiglmayr et al., Phys. Rev. Lett. 101, 133004 (2008)]. Absolute rate constants for photoassociation at large detunings from the atomic asymptote are determined and are found to be surprisingly large. The photoassociation process is modeled using a full coupled-channel calculation for the continuum state, taking all relevant hyperfine states into account. The enhancement of the photoassociation rate is found to be caused by an `echo' of the triplet component in the singlet component of the scattering wave function at the inner turning point of the lowest triplet a3Sigma+ potential. This perturbation can be ascribed to the existence of a broad Feshbach resonance at low scattering energies. Our results elucidate the important role of couplings in the scattering wave function for the formation of deeply bound ground state molecules via photoassociation.Comment: Added Erratum, 20 pages, 9 figure
    • 

    corecore