985 research outputs found

    Effects of cobalt, magnesium, and cadmium on contraction of rat soleus muscle

    Get PDF
    The effects on isometric tension of three divalent ions that block calcium channels, magnesium, cobalt, and cadmium, were tested in small bundles of rat soleus fibers. Cobalt, at a concentration of 2 or 6 mM, reversibly depressed twitch and tetanic tension and the depression was much greater in solutions containing no added calcium ions. Magnesium caused much less depression of tension than cobalt. The depression of tension was not accompanied by membrane depolarization or a reduction in the amplitude of action potentials. A reduction caused by 6 mM cobalt in the amplitude of 40 or 80 mM potassium contractures was not accompanied by a comparable reduction in tension during 200 mM potassium contractures, and could be explained by a shift in the potassium contracture tension-voltage curve to more positive potentials (by +7 mV on average). Similar effects were not seen with 2 or 6 mM magnesium. At a concentration of 20 mM, both cobalt and magnesium depressed twitch and tetanic tension, cobalt having greater effect than magnesium. Both ions shifted the potassium contracture tension-voltage curve to the right by +5 to +10 mV, caused a small depression of maximum tension, and slowed the time course of potassium contractures. Cadmium (3 mM) depressed twitch, tetanic, and potassium contracture tension by more than 6 mM cobalt, but experiments were complicated by the gradual appearance of large contractures that became even larger, and sometimes oscillatory, when the solution containing cadmium was washed out. It was concluded that divalent cations affect both activation and inactivation of tension in a manner that cannot be completely explained by a change in surface charge

    C-terminal residues of skeletal muscle calsequestrin are essential for calcium binding and for skeletal ryanodine receptor inhibition

    No full text
    BACKGROUND Skeletal muscle function depends on calcium signaling proteins in the sarcoplasmic reticulum (SR), including the calcium-binding protein calsequestrin (CSQ), the ryanodine receptor (RyR) calcium release channel, and skeletal triadin 95 kDa (trisk95) and junctin, proteins that bind to calsequestrin type 1 (CSQ1) and ryanodine receptor type 1 (RyR1). CSQ1 inhibits RyR1 and communicates store calcium load to RyR1 channels via trisk95 and/or junctin. METHODS In this manuscript, we test predictions that CSQ1's acidic C-terminus contains binding sites for trisk95 and junctin, the major calcium binding domain, and that it determines CSQ1's ability to regulate RyR1 activity. RESULTS Progressive alanine substitution of C-terminal acidic residues of CSQ1 caused a parallel reduction in the calcium binding capacity but did not significantly alter CSQ1's association with trisk95/junctin or influence its inhibition of RyR1 activity. Deletion of the final seven residues in the C-terminus significantly hampered calcium binding, significantly reduced CSQ's association with trisk95/junctin and decreased its inhibition of RyR1. Deletion of the full C-terminus further reduced calcium binding to CSQ1 altered its association with trisk95 and junctin and abolished its inhibition of RyR1. CONCLUSIONS The correlation between the number of residues mutated/deleted and binding of calcium, trisk95, and junctin suggests that binding of each depends on diffuse ionic interactions with several C-terminal residues and that these interactions may be required for CSQ1 to maintain normal muscle function.This work was supported by the Australian Research Council (DP1094219 to AFD and NAB) and a NHMRC Career Development Award (NAB)

    The Lived Experience of Rural Mental Health Nurses

    Get PDF
    The lived experiences of five registered mental health nurses employed in community settings in the southwest region of Western Australia were examined in this study. The study was generated in response to concerns of clinicians working in the area about their scope of practice. Study participants were interviewed concerning their everyday “lived experience.” Interviews were audio taped, transcribed and coded numerically to ensure participant confidentiality. Data was analysed using van Manen’s hermeneutic phenomenological approach. Five essential themes were identified. They were holistic care of clients; isolation, autonomy and advanced practice; professional development and status recognition; educational support; and caseload numbers and caseload composition. The purpose of the study was to determine whether Community Mental Health Nurses (CMHN) employed in the southwest region of Western Australia encountered similar problems and role demands to those of generalist nurses working in rural Australia

    3D mapping of the SPRY2 domain of ryanodine receptor 1 by single-particle Cryo-EM

    Get PDF
    The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca(2+) release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform.The authors want to thank the Brigham and Women’s Hospital Biomedical Research Institute (to MS), the Australian National Health and the Medical Research Council (471418 to AD, MC and PB), and the European Commission (Marie Curie Action PIOF-GA-2009-237120 to AP-M)

    A Skeletal Muscle Ryanodine Receptor Interaction Domain in Triadin

    No full text
    Excitation-contraction coupling in skeletal muscle depends, in part, on a functional interaction between the ligand-gated ryanodine receptor (RyR1) and integral membrane protein Trisk 95, localized to the sarcoplasmic reticulum membrane. Various domains on Trisk 95 can associate with RyR1, yet the domain responsible for regulating RyR1 activity has remained elusive. We explored the hypothesis that a luminal Trisk 95 KEKE motif (residues 200-232), known to promote RyR1 binding, may also form the RyR1 activation domain. Peptides corresponding to Trisk 95 residues 200-232 or 200-231 bound to RyR1 and increased the single channel activity of RyR1 by 1.49 ± 0.11-fold and 1.8 ± 0.15-fold respectively, when added to its luminal side. A similar increase in [(3)H]ryanodine binding, which reflects open probability of the channels, was also observed. This RyR1 activation is similar to activation induced by full length Trisk 95. Circular dichroism showed that both peptides were intrinsically disordered, suggesting a defined secondary structure is not necessary to mediate RyR1 activation. These data for the first time demonstrate that Trisk 95's 200-231 region is responsible for RyR1 activation. Furthermore, it shows that no secondary structure is required to achieve this activation, the Trisk 95 residues themselves are critical for the Trisk 95-RyR1 interaction.This work was supported by the Australian Research Council (DP1094219 to A.F.D. and N.A.B.)

    Arg615Cys Substitution in Pig Skeletal Ryanodine Receptors Increases Activation of Single Channels by a Segment of the Skeletal DHPR II-III Loop

    Get PDF
    AbstractThe effect of peptides, corresponding to sequences in the skeletal muscle dihydropyridine receptor II-III loop, on Ca2+ release from sarcoplasmic reticulum (SR) and on ryanodine receptor (RyR) calcium release channels have been compared in preparations from normal and malignant hyperthermia (MH)-susceptible pigs. Peptide A (Thr671-Leu690; 36μM) enhanced the rate of Ca2+ release from normal SR (SRN) and from SR of MH-susceptible muscle (SRMH) by 10±3.2 nmole/mg/min and 76±9.7 nmole/mg/min, respectively. Ca 2+ release from SRN or SRMH was not increased by control peptide NB (Gly689-Lys708). AS (scrambled A sequence; 36μM) did not alter Ca 2+ release from SRN, but increased release from SRMH by 29±4.9 nmoles/mg/min. RyR channels from MH-susceptible muscle (RyRMH) were up to about fourfold more strongly activated by peptide A (≥1 nM) than normal RyR channels (RyRN) at −40mV. Neither NB or AS activated RyRN. RyRMH showed an ∼1.8-fold increase in mean current with 30μM AS. Inhibition at +40mV was stronger in RyRMH and seen with peptide A (≥0.6μM) and AS (≥0.6μM), but not NB. These results show that the Arg615Cys substitution in RyRMH has multiple effects on RyRs. We speculate that enhanced DHPR activation of RyRs may contribute to increased Ca2+ release from SR in MH-susceptible muscle

    Cardiac ryanodine receptor activation by a high Ca2+ store load is reversed in a reducing cytoplasmic redox environment

    Get PDF
    Here, we report the impact of redox potential on isolated cardiac ryanodine receptor (RyR2) channel activity and its response to physiological changes in luminal [Ca2+]. Basal leak from the sarcoplasmic reticulum is required for normal Ca2+ handling, bu
    corecore