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Abstract

The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca2+ release from the sarcoplasmic
reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally
known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the
RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2
domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles
for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of
the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach
enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the
antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D
localization of a SPRY2 domain in any known RyR isoform.
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Introduction

RyR1 consists of 4 subunits of 565 KDa associated in a

homotetramer (2.26 MDa) with fourfold symmetry. RyR1 acts as

a docking station for proteins and small molecules both in the

cytosol and the sarcoplasmic reticulum (SR). The available

interacting surface in the SR is limited because of the small mass

protruding into the SR lumen, however the cytosolic volume

available for protein-protein interaction is huge. Examples of

proteins interacting with RyR1 in the cytosolic side include

calmodulin [1,2,3], FKBP12 [4,5], the dihydropyridine receptor

DHPR [1,6,7], and RyR1 itself [8,9]. Protein-protein interaction

domains such as MIR, leucine zippers, EF-hands and SPRY

motifs are present in RyR1, several of which are repeated along

RyR1’s five thousand residue sequence [10].

The SPRY domain has been proposed as a targeting module for

protein-protein interactions [11,12,13]. The SPRY motif was first

identified as a repeat in the splA kinase of Dictyostelium discoideum and in

the RyR sequences [14]. There are eleven distinct protein families

known to contain this domain, which participate in diverse

physiological functions such as immunity, development, and signal

transduction [15,16]. The generic structure of SPRY consists of a b-

sandwich formed by two four-stranded antiparallel b-sheets. The two

b-sheets are interconnected by a-helices, whereas the b-strands are

connected by unstructured loops and turns [17]. There are three

SPRY domains present in the sequence of RyR1: SPRY1 (residues

582–798), SPRY2 (residues 1085–1208), and SPRY3 (residues 1358–

1571) with sequence identities ranging from 10 to 30%. Here we set

to map the 3D structure of the SPRY2 domain in the 3D structure of

RyR1. The SPRY2 domain has been suggested to play a role in the

interaction between the RyR1 and the DHPR [11,18,19,20].

Due to RyR1’s large size, electron microscopy (EM) has been

the most helpful tool for its structure determination [21,22,23,

24,25]. In the present study, we have combined antibody labeling

and single particle cryo-EM to map the position of the SPRY2

domain in RyR1. We have used three different specific antibodies

against the SPRY2 epitope in order to determine the positioning of

this protein-protein interacting module implicated in the interac-

tion between RyR1 and DHPR.

In several instances, antibody mapping and image reconstruction

of proteins has been used to identify certain protein regions. Some

examples using negative staining are the DHPR, F1 ATPase, and

scorpion hemocyanin [26,27,28]. In another example, a domain

within RyR1 was labeled using cryo-EM [29]. Immunodetection

and EM have been previously used to map protein regions using

standard 2D or 3D reconstruction methods [26,27,28,29,30]. In the

present study we have developed a new signal enhancement method

to ease the 3D determination of the antibody-binding site.

Results

Assessment of the Antibodies’ Immunoreactivity
Throughout the study we have used three different antibodies

against the SPRY2 domain. The first one (anti-SPRY2-A) is a
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polyclonal antibody against the unstructured loop between two of

the b-strands for SPRY2 (residues Pro1107-Ala1121). Anti-SPRY2-B

and anti-SPRY2-C are, respectively, a polyclonal and a monoclo-

nal antibody against the whole SPRY2 domain.

First of all, we qualitatively assessed the ability of the different

anti-SPRY2 antibodies to specifically recognize the SPRY2

domain in RyR1. Even though RYR1 contains three structural

SPRY domains, the sequence conservation among them is very

low, thus unspecific binding is less plausible. Nevertheless for

further details on the specificity of anti-SPRY2 antibodies one

should refer to [31]. For a cryo-EM study it is important to ensure

that the antibodies recognize the SPRY2 epitope in its native

conformation, folded within RyR1. Therefore, the SPRY2 domain

detection was also carried out in native conditions using dot blot.

As a control antibody, we used a commercial antibody against

RyR1, antibody 34C. In Western blot, the signal for the detection

of the SPRY2 domain in purified, denatured RyR1 was weak as

compared to the control RyR1 antibody (34C) (Fig. 1 upper row).

In contrast, native dot blot detection of purified RyR1 was very

intense in all cases (Fig. 1 middle row), suggesting strong native-

structure dependence for the immunodetection. The native dot

blot detection levels in rabbit skeletal muscle vesicles were similar

amongst all three anti-SPRY2 antibodies, but lower than the 34C

antibody (Fig. 1 bottom row). At least for anti-SPRY B, all this is in

full agreement with the report that this antibody recognizes native

RyR1 in SR vesicles and that it can immunoprecipitate purified

RyR1 with a third of the efficacy measured for the antibody 34C

[31].

Cryo-Electron Microscopy
Once the interaction between folded RyR1 and the different

antibodies was assessed, we proceeded to the incubation of purified,

solubilized RyR1 with the different antibodies and vitrification of

the preparation into a thin ice layer. To increase the randomness of

orientations, we applied the sample to holey grids without carbon

support. The cryo-preparation yielded well-preserved particles

(Fig. 2), and the number of micrographs recorded for each RyR1-

antibody preparation were 11, 35 and 49 for anti-SPRY2-A, anti-

SPRY2-B and anti-SPRY2-C, respectively.

Single-Particle Image Processing
Individual particles were selected using the program BOXER

[32]. If there appeared to be extra mass around the RyR1 particle,

presumably due to antibody bound, we placed the center of the

window in the center of mass of RyR1 itself. The total number of

particles obtained was 189, 490 and 1331 for the RyR1 incubated

with anti-SPRY2-A, anti-SPRY2-B and anti-SPRY2-C, respective-

ly. These were subsequently analyzed using the SPIDER/WEB

software package [33]. First, a library of 2D projections was

constructed by projecting a reference RyR1 [22] (EMDB code

5014) in all possible orientations, at 10-degree intervals, followed by

Figure 1. Immunoblotting of RyR1. Immunodetection of the SPRY2
domain in purified RyR1 samples after SDS-PAGE (*) and native
conditions (**) and in rabbit muscle vesicles (RyR1 in native conditions)
(***). The antibodies used are the following: anti-SPRY2-A, anti-SPRY2-B,
anti-SPRY2-C and anti-RyR-34C.
doi:10.1371/journal.pone.0025813.g001

Figure 2. Cryo-EM fields of ice-embedded particles of RyR1
incubated with anti-SPRY2 antibodies. A. Anti-SPRY2-A antibody.
B. Anti-SPRY2-B antibody. C. Anti-SPRY2-C antibody. Scale bar, 100 nm.
doi:10.1371/journal.pone.0025813.g002

3D Mapping of the SPRY2 Domain into RyR1
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a multi-reference alignment scheme. After visual inspection of every

aligned single particle, we identified RyR1s clearly showing extra

mass. A representative set of RyR1-antibody particles for anti-

SPRY2-A, anti-SPRY2-B and anti-SPRY2-C is shown in Fig. 3A

and the full set in Figure S1. These single particles represent RyR1

with at least one antibody attached. In all the three antibody

experiments, the antibody binds almost exclusively to the corners of

the square-prism shaped cytoplasmic domain, and facing the T-

tubule. In the RyR1 domain nomenclature, the three antibodies

bind in the vicinity of domains 5, 6, 8, 9 and 10 of RyR1 (Fig. 3B).

Signal Enhancement of Partially Occupied Symmetry-
Related Binding Sites

To further characterize the particles containing bound anti-

body, we created a series of reference 3D volumes that consisted of

the addition of four 30 Å radius spheres at the fourfold

symmetrically related potential antibody-binding sites to the

reference RyR1 3D reconstruction (see Fig. 3C). Each position

of the four-sphere set with respect to the RyR1 was guided from

the location of the extra mass taken from the 2D raw images.

Given the known flexibility of bound antibodies [34] these

occupied a fairly large area and thus only a limited set of

reference 3D volumes was necessary to recreate the possible

locations. Then, for each raw particle, we calculated the 2D

projections of the fabricated RyR1-antibody complex at matching

Euler angles (Fig. 3A, Figure S1). These images were then used as

a guide to interpret the images of RyR1 with one, two and even

three antibodies bound (Fig. 3A). Figure 3C shows the 3D

representation that best satisfied all the raw images, with the

SPRY2 domain located between domains 5 and 6 of RyR1.

Figure 3. 3D reconstruction of the RyR1 anti-SPRY2 binding site. A. Unprocessed RyR1 particles incubated with the specified anti-SPRY2
antibody (raw images in upper row, antibody position indicated in yellow in middle row) compared to a calculated 2D projection (bottom row) for
RyR1 containing four 30 Å radius spheres at the preliminary proposed binding region for the anti-SPRY2 antibody. For easier visualization the
projection of the spheres has been highlighted in semitransparent yellow. B. 3D volumes of RyR1 displayed in two different orientations illustrating
the preliminary location for the SPRY2 domain (purple shadowing). C. Preliminary assigned location for the anti-SPRY2 antibody (purple sphere) in the
RyR1 3D reconstruction, at the vicinity of the domains 5 and 6. A set of four such spheres in the first, second, third and fourth repeats of the RyR1
(indicated by numerals) originated the 2D projections shown in the bottom rows of panel A. D. Low-resolution 3D reconstructions of RyR1 with anti-
SPRY2 antibody (golden surface) in two orthogonal positions, without (left) and with (right) the use of fourfold symmetry. The black arrows point at
the main difference between the 3D maps corresponding to the RyR1-antibody and the RyR1 control (purple mesh). E. 3D reconstruction with
superimposed contour maps indicating the density level in the selected one-pixel slice (dashed line in panel D) for the non symmetrized and the
fourfold symmetrized 3D reconstructions. The corresponding contour map for the control 3D volume (panel D, purple mesh) is displayed as a
reference (bottom). The gradient scale indicates the density level in arbitrary units.
doi:10.1371/journal.pone.0025813.g003
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Although in this figure the binding site for the antibody is

represented by a single sphere at position (repeat) 1, it is worth

mentioning that RyR1 is a homotetramer, thus, the antibody

binding site is present three more times (repeats 2 to 4 in Fig. 3C).

Besides the number of particles with antibody bound to RyR1

being insufficient to generate a high quality 3D reconstruction, a

further limitation was imposed by the fact that while the RyR1

exhibits fourfold symmetry, in general not all its corners were

decorated with an antibody. This caused a selective dilution of the

signal in the region of the antibody. To overcome this, the

symmetry operator and the Euler angles of every single particle-

containing antibody were taken into account and re-computed to

make the antibody converge onto the same repeat in 3D (repeat 1

in Fig. 3C indicated by a purple sphere). Because there were some

RyR1s with two and even three antibodies bound, the dataset

expanded from 90 to 124 particles with the SPRY2 antibody in the

first repeat. The RyR1-antibody raw images were grouped into a

single dataset since the three antibodies bound to the same region

of RyR1, and the variance in position within a given antibody

dataset was of the same magnitude than the intra-antibody

position variance.

With the transformed dataset having all particles with an anti-

SPRY antibody bound to repeat 1 of RyR1, we followed two

different approaches to obtain a 3D reconstruction, without and

with symmetry enforcement. Figure 3D shows both the symmetry-

free and the fourfold symmetrized 3D reconstructions of the RyR1

with anti-SPRY2 antibodies bound. The 3D reconstruction

without the use of symmetry shows the signal of the antibody

concentrated in the first repeat of RyR1, while the fourfold

symmetry distributes the signal of the antibody originating from

one corner into the four symmetrically-related repeats. In both

cases the quality of both reconstructions is poor because of (i) the

low number of particles, and (ii) the noise introduced by the

flexibility and the diversity of orientations that is adopted by

bound antibodies [34]. Nevertheless, a clear signal emerges in the

vicinity of domain 6 of RyR1 in both cases. To better illustrate

these features, we used a one-pixel thick slice of the 3D

reconstruction (dashed line in Fig. 3D) and color-coded the

density gradient above a threshold level, thus revealing the more

intense regions (Fig. 3E). In the case of the symmetry-free

reconstruction, the density is most intense in domain 6 of the first

and third repeats but some intensity is also measurable in domains

5 and 10 in the second and fourth repeats (Fig. 3E top left). When

fourfold symmetry is applied, the maximum intensity appears in

domain 6, followed by domain 5 and 10 with less intensity (Fig. 3E

top right). As a control, the same slice is represented for the

reference 3D volume (without antibody) showing that the

maximum intensity is restricted to domain 5 (Fig. 3E, bottom).

Docking of the Atomic Structure of the SPRY Domain
within RyR1’s 3D Envelope

For illustration purposes, we have docked the homology model

of the SPRY2 domain of RyR1 [20] in the RyR1 density map,

using as docking site the anti-SPRY2 binding sites resulting from

this study (Fig. 4A, see Methods section for details). The SPRY2

model was initially placed in the high-intensity spots (indicated by

arrows in Fig. 3E) for both the symmetry-free and fourfold

symmetry reconstructions (in the vicinity of domain 6, according

to Figure 3E) with three initial different orthogonal orientations

(90u, 0u, 290u) of the loop 2 in respect to the RyR1 reconstruction

in order to avoid favoring any specific orientation of the loop.

Thus, we had six initial positions. The system was allowed to

iterate until reaching a solution. Six different solutions were

obtained (data not shown). Five of these solutions docked in

domain 6. The other solution docked in domain 4 (adjacent to

domain 6). Four out of six solutions displayed the SPRY2 loop

towards the cytosolic side. These solutions with an exposed SPRY2

loop are the only ones that can explain the binding of the anti-

SPRY2-A antibody, specifically designed against this loop, in the

folded RyR1. From the different dockings that we obtained, we

Figure 4. Docking of a homology model for the SPRY2 domain
in the context of the RyR1-DHPR and inter-RyR1 interactions
found in the triad junction. A. Docking of a homology model for the
SPRY2 domain in the anti-SPRY2 binding site of RyR1. The two RyR1s are
in the typical lattice arrangement [8] and the dashed-line circles indicate
the region of overlap with the DHPR [36]. The two SPRY2 orientations
within the RyR1 originate from two slightly different starting locations
for the antibody-binding site: that obtained from the unsymmetrized
3D volume (purple) and that obtained from the fourfold symmetrized
3D volume (magenta). The RyR1 with docked SPRY2 is shown in two
orthogonal orientations. The distance between two proximal SPRY2
domains of two neighboring RyR1s measures 60 Å (blue line). B.
Domains of RyR1 relevant for the interaction with the DHPR: DR2 region
(domains 6–8, light blue [39]), and region of overlap with DHPR [36]
delimited by dashed line. The SPRY2 domain (domain 6) is shown in
dark blue. The side view of RyR1 is rotated 45u around the fourfold axis
with respect to the side views shown in panel A and Fig. 3, panels B–D.
Scale bars, 5 nm.
doi:10.1371/journal.pone.0025813.g004
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have subjectively displayed two of the docking solutions with the

SPRY2 loop oriented towards the cytosol (Fig. 4A).

Discussion

Recovering the Signal when a Symmetric Protein is
Partially Decorated

In this study, we have mapped the SPRY2 domain of RyR1

(residues 1085–1208) in the vicinity of domain 6 by antibody

labeling in combination with single-particle cryo-EM. This is the

first 3D localization of a SPRY2 domain in any known RyR

isoform. The 3D reconstruction scheme had to be modified to take

into account the signal ‘‘dilution’’ caused by partial decoration of

equivalent, symmetrically located binding sites. For this, the extra

mass corresponding to the antibody was computationally ‘‘moved’’

to a specified repeat of the structure as follows. Since for a

symmetric shape there are several redundant configurations (in

our case four) of the Euler angles that yield the same 2D

projection, for every decorated raw image where the antibody was

visible and did not fall in a specified corner of the RyR1, we

replaced its Euler angles for the symmetrically related Euler angles

that would place the antibody on the specified corner. If the raw

image had more than one antibody bound, this was repeated by

providing the symmetrically related Euler angles that would place

this second bound antibody in the specified location, and so on.

Finally, the 3D reconstruction was performed with all antibodies

back-projected to the specified repeat.

The above method works as long as the antibody is visible and

always binds to the same site. To establish this we first made a

rough identification of the 3D position of the antibody relative to

the RyR1 by creating a simulated 3D of RyR1 with four antibody-

sized spheres located at four equivalent positions and projecting

this simulated model in all orientations. Then once the RyR1 in

the raw image was matched to the corresponding projection, the

position of the projected spheres was compared to the position of

the extra mass (antibody). The four spheres were then placed in

other locations and the process was repeated until the match

between the set of simulated projections and the set of raw images

was optimal (Figure S1), which indicated the approximate 3D

location of the antibody. With this new method it has been

possible not only to identify the antibody in the individual particles

but it has also been possible to recover the signal in the context of

the 3D structure.

Location of the SPRY2 Domain in the Context of the 3D
Structure of the RyR1

SPRY domains have been shown to mediate protein-protein

interaction processes involved in diverse cellular functions

[11,12,13,14,15,16]. The SPRY domains of several proteins have

been recently crystallized, revealing a high structural conservation

for this domain. A distinctive feature of SPRY domains for the

protein-protein interaction specificity is the presence of an

unstructured and flexible loop between b-strands (Fig. 4A). The

flexible loop is thought to mediate specific protein-protein

interactions. This loop shows conformational exchange in

intermediate time scales, which appears to be important for

protein-protein interactions [35].

The 3D location of SPRY2 within domain 6 of RyR1 found in

this study, near the corners of the square prism-shaped

cytoplasmic domain and oriented towards the T-tubule, overlaps

with regions that contribute to the interaction between the DHPR

and RyR1 identified in several previous studies (see Fig. 4B). First,

the proposed positioning of the DHPR tetrads with respect to the

RyR1 found by TEM thin section and freeze-fracture studies

[8,36] locate these in domains 5-6-9. Second, studies using green

fluorescent protein tags inserted along the RyR1 sequence have

shown that the divergent region 2 of RyR1 (DR2, residues 1342–

1403), a sequence crucial for the RyR1-DHPR coupling [37,38],

was located between domains 6 and 8 of RyR1 [39]. The TEM

thin-section studies also indicate that RyR1s form a two-

dimensional lattice [8]. In the lattice, two SPRY2 domains from

two adjacent RyR1s are facing each other (Fig. 4A). However it is

unlikely that SPRY2 domains have a direct role in these inter-

RyR1 interactions because two neighboring SPRY2 domains are

located at a relatively large distance of each other, around 60 Å.

Finally, the location of the SPRY2 domain on the peripheral

region of the cytoplasmic domain makes it also widely accessible to

other protein binding partners in the cytoplasm.

In conclusion, our methodological approach has allowed us to

extract detailed and relevant information out of very limited

amount of data. Our antibody labeling and 3D mapping of RyR1

provides new and deeper insight on the location of the SPRY2

domain in the RyR1 structure and in the context of the RyR1-

DHPR interaction. Until the structure of big proteins such as

RyR1 can be resolved by higher resolution techniques such as X-

ray crystallography, cryo-EM appears to be the best feasible

alternative to identify regions in the 3D structure of proteins.

Materials and Methods

Source for the Antibodies against the SPRY2 Domain
Anti-SPRY2-A: A peptide encoding a SPRY2 domain loop

between residues Arg1106 to Leu1120 was synthesized and coupled

to Keyhole Limpet Hemocyanin by the Australian Cancer

Research Foundation Biomolecular Resource Facility at the John

Curtin School of Medical Research. The SPRY2 loop peptide was

used as an immunogen for the preparation of anti-SPRY2-A

polyclonal antibodies. Rabbit polyclonal antiserum was generated

by standard techniques after three weekly injections of the antigen

emulsified in Freund’s adjuvant. The specific anti-SPRY2

antibodies were purified from the crude antiserum by affinity

purification on SPRY2 immobilized on nitrocellulose as described

previously [40].

Anti-SPRY2-B: Recombinant SPRY2 domain protein for use as

an antigen for rabbit antiserum production was expressed in E.coli.

A cDNA fragment encoding residues from Phe1075 to Ser1210 was

amplified from the Oryctolagus cuniculus (European rabbit) RyR1

cDNA [41]. The amplified cDNA was cloned between the EcoR1

and Sal1 sites of the expression vector pHUE [42]. To facilitate

cloning, additional bases were included at the 59 and 39 ends of the

cDNA that resulted in the inclusion of non-native Ser and Glu

residues at the N-terminal of the finally purified protein. The use

of the pHUE vector and the purification of expressed proteins

have been described in detail [42]. Briefly the recombinant protein

was initially expressed as a polyHis-ubiquitin-SPRY2 fusion

protein that was purified by affinity chromatography on Ni-

iminodiacetate agarose. Subsequently the N-terminal polyHis-

ubiquitin tag was removed by cleavage with the catalytic core of

the ubiquitin cleaving enzyme Usp2. Finally, the polyHis–

ubiquitin tag and the Usp2 fragment were removed by a second

round of Ni agarose chromatography. The purified SPRY2

protein was used for the preparation of polyclonal (anti-SPRY2-B)

and monoclonal antiserum (anti-SPRY2-C).

Anti-SPRY2-C: Monoclonal antibodies were developed in the

laboratory of Professor Yoshinobu Eishi by a standard protocol

[43] after immunization of BALBc mice with purified recombinant

SPRY2 protein. Hybridoma cell lines producing anti-SPRY2

antibodies were checked by enzyme-linked immunosorbent assay

3D Mapping of the SPRY2 Domain into RyR1
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(ELISA) with the recombinant SPRY2 protein. Hybridomas giving

positive results were screened by immunohistochemistry with

formalin-fixed and paraffin-embedded tissue sections of skeletal

muscle.

RyR1 Purification
RyR1 from rabbit skeletal muscle was purified as described

previously [21,22]. Briefly, the solubilized RyR was purified from

SR vesicles using gel filtration and sucrose gradient, followed by

concentration on a heparin column. This preparation yielded a

single band compatible with a MW of 565 kDa.

Preparation of RyR1-anti SPRY Complexes for cryo-EM
Antibodies and RyR1 were mixed at a molar ratio of 10

(antibody:RyR1 tetramer) and incubated at 4uC for a time period

ranging between 3–9 hours. The final RyR1 concentration was of

2.26 mg/ml in all cases. The final buffer was 20 mM MOPS

pH 7.4, 0.15 M NaCl, 0.5% CHAPS, 2 mM EGTA, 2 mM

DTT, conditions known to favor the RyR1 in the closed

conformation [21,22], and a protease inhibitor cocktail.

Immunodetection
Rabbit muscle vesicles containing native RyR1 were transferred

to PVDF membranes by means of vacuum (dot-blot). Purified

RyR1 from rabbit muscle vesicles was resolved by means of SDS-

PAGE and electrotransfered to PVDF membranes in a denatured

state (Western blot). RyR1 was immunodetected in both native

and denatured states by incubation of PVDF membranes with

rabbit raised anti-SPRY2-A and anti-SPRY2-B, and with mouse

raised anti-SPRY2-C and 34C (abcam ab2868) antibodies. The

detection was carried out using both anti-rabbit and anti-mouse

secondary antibodies and a horseradish peroxidase-based chemi-

luminiscent detection kit (Supersignal West Dura, Thermo

Scientific).

Cryo-EM and Single-Particle Image Processing
A 5 ml aliquot of the RyR1-antibody incubation mixture was

adsorbed to a holey grid (either Protochips TM or quantifoilTM),

and the excess of buffer blotted off with Whatman 540 filter paper,

blotting time 40. The samples were vitrified by plunging the grid

into liquid ethane using either an FEI VitrobotTM device, with the

main chamber at 80% humidity. Cryo-electron microscopy was

performed on a FEI Tecnai F20 operated at 200 kV under low

dose conditions and a magnification of 50,0006. Defocus range

varied between 2.5 and 4 mm. A total of 11, 35 and 49

micrographs for anti-SPRY2-A, anti-SPRY2-B, and anti-

SPRY2-C, respectively, were recorded on Kodak SO-163 film.

Micrographs were digitized in a Zeiss SCAI scanner at a step size

of 7 mm or 1.4 Å per pixel, and subsequently binned down to a

pixel size of 2.8 Å. A total number of 189, 490 and 1331 particles

for anti-SPRY2-A, anti-SPRY2-B, and anti-SPRY2-C, respective-

ly, were visually selected and windowed with BOXER [32]. All

subsequent image processing steps were carried out using SPIDER

[33]. In brief, particles with any anti-SPRY2 antibody bound were

visually inspected yielding a dataset formed by 90 particles. After

ensuring that the three antibodies bound to the same region of

RyR1, these particles were matched to a reference with defined

Euler angles obtained from the projection of a low-resolution

reference 3D volume of RyR1. The Euler angles for these particles

were re-computed in order to place the antibody-binding site in a

single repeat of the (fourfold symmetric) RyR1, yielding a total of

124 particles. These particles were used to determine a non-

symmetric and a fourfold symmetric (assuming RyR1’s fourfold

symmetry) 3D reconstruction for the antibody-bound particles. In

the density map, the steep region in the density gradient marks the

boundaries of the macromolecule. We choose the mid point

(threshold of 0.25 in our case) as the density threshold for the

isosurface representations. The 3D reconstructions were low-pass

filtered to 30 Å resolution using a Fermi filter.

Visualization and Docking
Chimera [44] was used to display the 3D volumes and atomic

models in all figures. For visualization purposes and to show more

accurately the distinctive features of RyR1, a 3D map of RyR1 at

10.3 Å resolution is displayed in Figures 3B, 3C, 3E and 4. The

homology modeled SPRY2 domain [20] was docked in the RyR1

cryo-EM map using the correlation method in ‘‘Fit in Map’’ tool

from Chimera [45]. A 10.3 Å resolution map of the SPRY2 model

was generated and was allowed to freely rotate and move using the

full density range. The correlation of the fit was used as the

weighing function and the system was allowed to iterate until it

stabilized.

Supporting Information

Figure S1 Complete set of identified RyR1 single-
particles incubated with anti-SPRY2 antibodies present-
ing additional mass (indicated by white arrows).
Unprocessed RyR1 particles incubated with the specified anti-

SPRY2 antibody (anti-SPRY2-A, anti-SPRY2-B, anti-SPRY2-C;

upper row), and calculated 2D projections (bottom row) for RyR1

containing four 30 Å radius spheres at the preliminary proposed

binding region for the anti-SPRY2 antibody.

(PDF)
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