3,277 research outputs found
Handbook for Computerized Reliability Analysis Method /CRAM/
Method for analyzing reliability by use of computer
From an automated flight-test management system to a flight-test engineer's workstation
The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development
The search for new physics by the measurement of the 4-jet cross section at LHC and FNAL
We investigate the possibility to look for new physics by the measurement of
the 4-jet cross section at LHC and FNAL. In particular, we consider the model
with scalar colour octet and the supersymmetric model with R-parity violation.
In both models pair produced new particles decay into 2 jets thus leading to
4-jet events. Therefore, the measurement of the distributions of 4-jet
differential cross section on the invariant dijet masses allows to look for new
physics. The main background comes from standard QCD 4-jet events. We find that
at LHC it would be possible to discover scalar colour particles with masses up
to 900 Gev and for FNAL the corresponding bound is 175 Gev.Comment: 14 pages, late
A NASA/RAE cooperation in the development of a real-time knowledge-based autopilot
As part of a US/UK cooperative aeronautical research program, a joint activity between the NASA Dryden Flight Research Facility and the Royal Aerospace Establishment on knowledge-based systems was established. This joint activity is concerned with tools and techniques for the implementation and validation of real-time knowledge-based systems. The proposed next stage of this research is described, in which some of the problems of implementing and validating a knowledge-based autopilot for a generic high-performance aircraft are investigated
Systems, interactions and macrotheory
A significant proportion of early HCI research was guided by one very clear vision: that the existing theory base in psychology and cognitive science could be developed to yield engineering tools for use in the interdisciplinary context of HCI design. While interface technologies and heuristic methods for behavioral evaluation have rapidly advanced in both capability and breadth of application, progress toward deeper theory has been modest, and some now believe it to be unnecessary. A case is presented for developing new forms of theory, based around generic “systems of interactors.” An overlapping, layered structure of macro- and microtheories could then serve an explanatory role, and could also bind together contributions from the different disciplines. Novel routes to formalizing and applying such theories provide a host of interesting and tractable problems for future basic research in HCI
Study of arc-jet propulsion devices Final report, 20 Nov. 1964 - 19 Dec. 1965
Energy transfer mechanisms in radiation, water, and regeneratively cooled, and MPD arc jet propulsion device
Equidistribution of Heegner Points and Ternary Quadratic Forms
We prove new equidistribution results for Galois orbits of Heegner points
with respect to reduction maps at inert primes. The arguments are based on two
different techniques: primitive representations of integers by quadratic forms
and distribution relations for Heegner points. Our results generalize one of
the equidistribution theorems established by Cornut and Vatsal in the sense
that we allow both the fundamental discriminant and the conductor to grow.
Moreover, for fixed fundamental discriminant and variable conductor, we deduce
an effective surjectivity theorem for the reduction map from Heegner points to
supersingular points at a fixed inert prime. Our results are applicable to the
setting considered by Kolyvagin in the construction of the Heegner points Euler
system
The use of an automated flight test management system in the development of a rapid-prototyping flight research facility
An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems
Lateral Separation of Macromolecules and Polyelectrolytes in Microlithographic Arrays
A new approach to separation of a variety of microscopic and mesoscopic
objects in dilute solution is presented. The approach takes advantage of unique
properties of a specially designed separation device (sieve), which can be
readily built using already developed microlithographic techniques. Due to the
broken reflection symmetry in its design, the direction of motion of an object
in the sieve varies as a function of its self-diffusion constant, causing
separation transverse to its direction of motion. This gives the device some
significant and unique advantages over existing fractionation methods based on
centrifugation and electrophoresis.Comment: 4 pages with 3 eps figures, needs RevTeX 3.0 and epsf, also available
in postscript form http://cmtw.harvard.edu/~deniz
Gel-Electrophoresis and Diffusion of Ring-Shaped DNA
A model for the motion of ring-shaped DNA in a gel is introduced and studied
by numerical simulations and a mean-field approximation. The ring motion is
mediated by finger-shaped loops (hernias) that move in an amoeba-like fashion
around the gel obstructions. This constitutes an extension of previous
reptation tube treatments. It is shown that tension is essential for describing
the dynamics in the presence of hernias. It is included in the model as long
range interactions over stretched DNA regions. The mobility of ring-shaped DNA
is found to saturate much as in the well-studied case of linear DNA.
Experiments in polymer gels, however, show that the mobility drops
exponentially with the DNA ring size. This is commonly attributed to
dangling-ends in the gel that can impale the ring. The predictions of the
present model are expected to apply to artificial 2D obstacle arrays (W.D.
Volkmuth, R.H. Austin, Nature 358,600 (1992)) which have no dangling-ends. In
the zero-field case an exact solution of the model steady-state is obtained,
and quantities such as the average ring size are calculated. An approximate
treatment of the ring dynamics is given, and the diffusion coefficient is
derived. The model is also discussed in the context of spontaneous symmetry
breaking in one dimension.Comment: 8 figures, LaTeX, Phys. Rev. E - in pres
- …