12 research outputs found
Effect of ligands to toll-like receptors (TLR) 3, 7 and 9 on mice infected with mouse hepatitis virus A59
Mice infected with mouse hepatitis virus A59 (MHV-A59), an enveloped, positive-strand RNA Co-ronavirus, induce hepatitis, thymus involution, IgG2a-restricted hypergammaglobulinaemia, transaminase release and autoantibodies (autoAb) to liver and kidney fumarylacetoacetate hy-drolase (FAH). Since Toll-like receptors (TLR) play a central role in innate immunity, we explored the effects of TLR3, 7 and 9 stimulation on MHV mouse infection. Thus, the animals were treated with Poly (I:C), Loxoribine and CpG, the respective TLR ligands. MHV-infected mice inoculated with Poly (I:C) had significant lower levels of plasma transaminases and Ig, anti-MHV Ab, and uric acid than MHV-infected animals, whereas autoAb to kidney tissue were observed. Loxoribine only produced a slight decrease of uric acid levels and serum Ig. CpG showed deleterious effects on MHV-infected mice, since survival of animals dramatically dropped to about 10%. AutoAb to murine tissues and uric acid release were not affected, whereas transaminases and anti-MHV Ab were slightly elevated. Besides, CpG administration produced a decrease of the high levels of serum Ig induced by the virus. Therefore, results indicated that TLR3 stimulation appeared to protect the animals against the viral infection, whereas CpG aggravated its signs. Loxoribine, the TLR7 ligand, did not show major effects.Fil: Aparicio, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Duhalde Vega, Maite. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Retegui, Lilia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentin
Ivermectin reduces in vivo coronavirus infection in a mouse experimental model
SARS-CoV2 is a single strand RNA virus member of the type 2 coronavirus family, responsible for causing COVID-19 disease in humans. The objective of this study was to test the ivermectin drug in a murine model of coronavirus infection using a type 2 family RNA coronavirus similar to SARS-CoV2, the mouse hepatitis virus (MHV). BALB/cJ female mice were infected with 6,000 PFU of MHV-A59 (Group Infected; n=20) and immediately treated with one single dose of 500 μg/kg of ivermectin (Group Infected + IVM; n=20), or were not infected and treated with PBS (Control group; n=16). Five days after infection/treatment, mice were euthanized to obtain different tissues to check general health status and infection levels. Overall results demonstrated that viral infection induces the typical MHV disease in infected animals, with livers showing severe hepatocellular necrosis surrounded by a severe lymphoplasmacytic inflammatory infiltration associated with a high hepatic viral load (52,158 AU), while ivermectin administration showed a better health status with lower viral load (23,192 AU; p<0.05) and few livers with histopathological damage (p<0.05), not showing statistical differences with control mice (P=NS). Furthermore, serum transaminase levels (aspartate aminotransferase and alanine aminotransferase) were significantly lower in treated mice compared to infected animals. In conclusion, ivermectin seems to be effective to diminish MHV viral load and disease in mice, being a useful model for further understanding new therapies against coronavirus diseases.Fil: Arevalo, A. P.. Instituto Pasteur de Montevideo; UruguayFil: Pagotto, R.. Instituto Pasteur de Montevideo; UruguayFil: Pórfido, Jorge Luis. Instituto Pasteur de Montevideo; Uruguay. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Daghero, H.. Instituto Pasteur de Montevideo; UruguayFil: Segovia, Alcira Mercedes. Instituto Pasteur de Montevideo; Uruguay. Universidad de la República; UruguayFil: Yamasaki, K.. Universidad de la Republica. Facultad de Veterinaria.; UruguayFil: Varela, B. Universidad de la Republica. Facultad de Veterinaria.; UruguayFil: Hill, Marcelo. Instituto Pasteur de Montevideo; Uruguay. Universidad de la República; UruguayFil: Verdes, J. M.. Universidad de la Republica. Facultad de Veterinaria.; UruguayFil: Duhalde Vega, Maite. Instituto Pasteur de Montevideo; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Bollati Fogollin, M.. Instituto Pasteur de Montevideo; UruguayFil: Crispo, Martina. Instituto Pasteur de Montevideo; Urugua
Uric acid and HMGB1 are involved in the induction of autoantibodies elicited in mice infected with mouse hepatitis virus A59
We have shown that mice infected with mouse hepatitis virus A59 develop autoantibodies (autoAb) to liver and kidney fumarylacetoacetate hydrolase (FAH). Because it has been proposed that the immune system is stimulated by alarm signals called damage-associated molecular patterns or alarmins, we investigated the participation of uric acid and high-mobility group box protein 1 (HMGB1) in the autoimmune response elicited by mouse hepatitis virus (MHV). Mice subjected to MHV infection had increased plasmatic uric acid concentration that significantly decreased after 20 days of daily treatment with allopurinol and, simultaneously, autoAb to FAH were undetected. Furthermore, this autoAb disappeared after 30 days of treatment with ethyl pyruvate, along with a substantial reduction in serum HMGB1 concentration. Both results indicated a remarkable relationship between the autoimmune process induced by the virus and uric acid and HMGB1 liberation. Unexpectedly, it was found that allopurinol and ethyl pyruvate inhibited the release of both uric acid and HMGB1. Because HMGB1 is activated through binding to interleukin 1β, and that this cytokine is produced by the NLRP3 inflammasome that could be stimulated by uric acid, we propose that both alarmins could be acting in concert with the induction of the autoAb to FAH in MHV-infected mice.Fil: Duhalde Vega, Maite. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Retegui, Lilia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentin
Levo-1-methyl tryptophan aggravates the effects of mouse hepatitis virus (MHV-A59) infection
Mice infected with mouse hepatitis virus A59 (MHV-A59) develop autoantibodies (autoAb) to liver and kidney fumarylacetoacetate hydrolase (FAH) with a concomitant enhancement of transaminases and release of alarmins such as uric acid and high-mobility group box protein 1 (HMGB1). Tryptophan catabolism is an endogenous mechanism that restricts excessive immune responses, thereby preventing immunopathology. Since indoleamine-2,3-dioxygenase (IDO) is the key and rate-limiting enzyme of tryptophan catabolism, the aim of this work was to explore whether specific inhibition of IDO by Levo-1-methyl tryptophan (MT) could affect MHV actions. Results showed that MT strongly enhanced the hypergammaglobulinemia induced by the virus, as well as anti-MHV Ab and uric acid release. Moreover, infected mice treated with MT did express anti-FAH autoAb and high levels of serum HMGB1. Survival of MHV-infected animals treated with MT was severely reduced compared with that of MHV-infected mice or controls only treated with MT. Furthermore, histological liver examination indicated that MT induced fibrosis in MHV-infected animals, whereas MT itself increased uric acid levels without shortening the animal life Thus, under our experimental conditions, results indicated an exacerbated response to MHV infection when IDO was blocked by MT.Fil: Duhalde Vega, Maite. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Aparicio, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Retegui, Lilia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentin
The autoimmune response elicited by mouse hepatitis virus (MHV-A59) infection is modulated by liver tryptophan-2,3-dioxygenase (TDO).
In a previous work we demonstrated that inhibition of mouse indoleamine 2,3-dioxygenase (IDO) by methyltryptophan (MT) exacerbated the pathological actions of mouse hepatitis virus (MHV-A59) infection, suggesting that tryptophan (TRP) catabolism was involved in viral effects. Since there is a second enzyme that dioxygenates TRP, tryptophan-2, 3-dioxygenase (TDO), which is mainly located in liver, we decided to study its role in our model of MHV-infection. Results showed that in vivo TDO inhibition by LM10, a derivative of 3-(2-(pyridyl) ethenyl) indole, resulted in a decrease of anti- MHV Ab titers induced by the virus infection. Besides, a reduction of some alarmin release, i.e, uric acid and high-mobility group box1 protein (HMGB1), was observed. Accordingly, since alarmin liberation was related to the expression of autoantibodies (autoAb) to fumarylacetoacetate hydrolase (FAH), these autoAb also diminished. Moreover, PCR results indicated that TDO inhibition did not abolish viral replication. Furthermore, histological liver examination did not reveal strong pathologies, whereas mouse survival was hundred percent in control as well as in MHV-infected mice treated with LM10. Data presented in this work indicate that in spite of the various TDO actions already described, specific TDO blockage could also restrain some MHV actions, mainly suppressing autoimmune reactions. Such results should prompt further experiments with various viruses to confirm the possible use of a TDO inhibitor such as LM-10 to treat either viral infections or even autoimmune diseases triggered by a viral infection
Properties of antibodies to a synthetic peptide representing an epitope shared by receptors of the type I cytokine family
Previous works from our laboratory demonstrated that the monoclonal antibody (MAb) called R7B4 is directed to an epitope shared by various receptors corresponding to the type I cytokine receptor family, containing the common motif WSXWS or the homologous F(Y)GEFS. Later a consensus peptide significantly recognized by the MAb was identified and synthesized (sequence HGYWSEWSPE). In the present work, an homologous of the consensus sequence (HHGYWSEWSPE) was conjugated to PADRE adjuvant to produce Ab that could simulate the MAb activity, that is, acting as hormone and/or cytokine antagonists. The covalently conjugated peptide-PADRE was a better immunogen than the consensus peptide alone according to the reactivity of sera from C57BL/6 immunized mice and, besides, no Ab to PADRE were detected. Furthermore, Ab to consensus peptide elicited after peptide-PADRE inoculation into mice behaved as immunomodulatory agents, since they improved the humoral response to a foreign antigen (in this case ovalbumin). In addition, the Ab inhibited the in vitro proliferation of various cell lines, mainly cells derived from human and mouse breast cancer. Thus, immunization with the conjugate peptide-PADRE prepared under the experimental conditions described herein originated immunomodulatory Ab that, in the future, could be tested in some pathological conditions.Fil: Belloc, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Aguirre, Marisol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Peña, Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Aparicio, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Duhalde Vega, Maite. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Dormois, Sarah. Diaclone SAS; FranciaFil: Retegui, Lilia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; Argentin
Effects of interleukin 17A (IL-17A) neutralization on murine hepatitis virus (MHV-A59) infection
Mice infected with mouse hepatitis virus A59 (MHV-A59) develop hepatitis and autoantibodies (autoAb) to liver and kidney fumarylacetoacetate hydrolase (FAH), a fact closely related to the release of alarmins such as uric acid and/or high-mobility group box protein 1 (HMGB1). We studied the effect of neutralizing monoclonal antibodies (MAb) against IL-17A in our model of mouse MHV-A59-infection. MAb anti IL-17F and anti-IFNγ were used to complement the study. Results showed that transaminase levels markedly decreased in MHV-A59-infected mice treated with MAb anti-IL-17A whereas plasmatic Ig concentration sharply increased. Conversely, MAb anti-IL-17F enhanced transaminase liberation and did not affect Ig levels.Serum IFNγ was detected in mice infected with MHV-A59, and its concentration increased after MAb anti-IL-17A administration. Besides, MAb anti-IFNγ greatly augmented transaminase plasmatic levels. IL-17A neutralization did not affect MHV-A59-induction of HMGB1 liberation and slightly augmented plasmatic uric acid concentration. However, mice treated with the MAb failed to produce autoAb to FAH. The above results suggest a reciprocal regulation of Th1 and Th17 cells acting on the different MHV-A59 effects. In addition, it is proposed that IL-17A is involved in alarmins adjuvant effects leading to autoAb expression.Fil: Aparicio, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Ottobre Saborido, Macarena Aylén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Duhalde Vega, Maite. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Coutelier, Jean-Paul. Université Catholique de Louvain; BélgicaFil: Van Snick, Jacques. Ludwig Institute for Cancer Research; BélgicaFil: Retegui, Lilia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentin
PD-1/PD-L1 blockade abrogates a dysfunctional innate-adaptive immune axis in critical β-coronavirus disease
International audienceSevere COVID-19 is associated with hyperinflammation and weak T cell responses against SARS-CoV-2. However, the links between those processes remain partially characterized. Moreover, whether and how therapeutically manipulating T cells may benefit patients are unknown. Our genetic and pharmacological evidence demonstrates that the ion channel TMEM176B inhibited inflammasome activation triggered by SARS-CoV-2 and SARS-CoV-2–related murine β-coronavirus. Tmem176b −/− mice infected with murine β-coronavirus developed inflammasome-dependent T cell dysfunction and critical disease, which was controlled by modulating dysfunctional T cells with PD-1 blockers. In critical COVID-19, inflammasome activation correlated with dysfunctional T cells and low monocytic TMEM176B expression, whereas PD-L1 blockade rescued T cell functionality. Here, we mechanistically link T cell dysfunction and inflammation, supporting a cancer immunotherapy to reinforce T cell immunity in critical β-coronavirus disease