87 research outputs found

    Influence of absorbed energy distribution along beam radius on ignition threshold of condensed explosives

    Get PDF
    The criterion of the condensed explosive ignition by the electron beam, which takes into account Gaussian distribution of electron density along the beam radius, has been obtained. It has been shown that radial heat removal of the absorbed energy leads to the increase in critical ignition energy if the effective track length of electrons in a solid is commensurate with the beam radius. The critical energy of PETN initiation by the electron beam has been calculated

    Influence of absorbed energy distribution along beam radius on ignition threshold of condensed explosives

    Get PDF
    The criterion of the condensed explosive ignition by the electron beam, which takes into account Gaussian distribution of electron density along the beam radius, has been obtained. It has been shown that radial heat removal of the absorbed energy leads to the increase in critical ignition energy if the effective track length of electrons in a solid is commensurate with the beam radius. The critical energy of PETN initiation by the electron beam has been calculated

    Magnetic measurements and simulations for a 4-magnet dipole chicane for the International Linear Collider

    Get PDF
    T-474 at SLAC is a prototype BPM-based energy spectrometer for the ILC. We describe magnetic measurements and simulations for the 4-magnet chicane used in T-474

    Muon (g-2) Technical Design Report

    Get PDF
    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

    Get PDF
    corecore