1,259 research outputs found

    A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Get PDF
    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the strength of the negative reactivity feedback in the UTVR, it is found that external reactivity insertions alone are inadequate for bringing about significant power level changes during normal reactor operations. Additional methods of reactivity control such as variations in the gaseous fuel mass flow rate, are needed to achieve the desired power level oontrol

    Deformed dimensional regularization for odd (and even) dimensional theories

    Full text link
    I formulate a deformation of the dimensional-regularization technique that is useful for theories where the common dimensional regularization does not apply. The Dirac algebra is not dimensionally continued, to avoid inconsistencies with the trace of an odd product of gamma matrices in odd dimensions. The regularization is completed with an evanescent higher-derivative deformation, which proves to be efficient in practical computations. This technique is particularly convenient in three dimensions for Chern-Simons gauge fields, two-component fermions and four-fermion models in the large N limit, eventually coupled with quantum gravity. Differently from even dimensions, in odd dimensions it is not always possible to have propagators with fully Lorentz invariant denominators. The main features of the deformed technique are illustrated in a set of sample calculations. The regularization is universal, local, manifestly gauge-invariant and Lorentz invariant in the physical sector of spacetime. In flat space power-like divergences are set to zero by default. Infinitely many evanescent operators are automatically dropped.Comment: 27 pages, 3 figures; v2: expanded presentation of some arguments, IJMP

    The Littlest Higgs

    Full text link
    We present an economical theory of natural electroweak symmetry breaking, generalizing an approach based on deconstruction. This theory is the smallest extension of the Standard Model to date that stabilizes the electroweak scale with a naturally light Higgs and weakly coupled new physics at TeV energies. The Higgs is one of a set of pseudo Goldstone bosons in an SU(5)/SO(5)SU(5)/SO(5) nonlinear sigma model. The symmetry breaking scale ff is around a TeV, with the cutoff \Lambda \lsim 4\pi f \sim 10 TeV. A single electroweak doublet, the ``little Higgs'', is automatically much lighter than the other pseudo Goldstone bosons. The quartic self-coupling for the little Higgs is generated by the gauge and Yukawa interactions with a natural size O(g2,λt2)O(g^2,\lambda_t^2), while the top Yukawa coupling generates a negative mass squared triggering electroweak symmetry breaking. Beneath the TeV scale the effective theory is simply the minimal Standard Model. The new particle content at TeV energies consists of one set of spin one bosons with the same quantum numbers as the electroweak gauge bosons, an electroweak singlet quark with charge 2/3, and an electroweak triplet scalar. One loop quadratically divergent corrections to the Higgs mass are cancelled by interactions with these additional particles.Comment: 15 pages. References added. Corrected typos in the discussion of the top Yukawa couplin

    Two-Higgs doublet models from TeV-scale supersymmetric extra U(1) models

    Get PDF
    We investigate the reduction of a general TeV-scale supersymmetric extra U(1) model to a 2HDM below the TeV- scale through the tree level non-decoupling. Portions of the parameter space of the extra U(1) model appropriate for obtaining a 2HDM are identified. Various properties of the resulting 2HDM are connected to the parameter space of the underlying model. PACS: 12.60.Jv, 12.60.Cn, 12.60.FrComment: 12 pages, 4 postscript figures, to appear in Phys. Rev.

    Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability

    Full text link
    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter KK. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the damping rings.Comment: 10 pages, 7 figure
    corecore