1,264 research outputs found
A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept
Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the strength of the negative reactivity feedback in the UTVR, it is found that external reactivity insertions alone are inadequate for bringing about significant power level changes during normal reactor operations. Additional methods of reactivity control such as variations in the gaseous fuel mass flow rate, are needed to achieve the desired power level oontrol
Deformed dimensional regularization for odd (and even) dimensional theories
I formulate a deformation of the dimensional-regularization technique that is
useful for theories where the common dimensional regularization does not apply.
The Dirac algebra is not dimensionally continued, to avoid inconsistencies with
the trace of an odd product of gamma matrices in odd dimensions. The
regularization is completed with an evanescent higher-derivative deformation,
which proves to be efficient in practical computations. This technique is
particularly convenient in three dimensions for Chern-Simons gauge fields,
two-component fermions and four-fermion models in the large N limit, eventually
coupled with quantum gravity. Differently from even dimensions, in odd
dimensions it is not always possible to have propagators with fully Lorentz
invariant denominators. The main features of the deformed technique are
illustrated in a set of sample calculations. The regularization is universal,
local, manifestly gauge-invariant and Lorentz invariant in the physical sector
of spacetime. In flat space power-like divergences are set to zero by default.
Infinitely many evanescent operators are automatically dropped.Comment: 27 pages, 3 figures; v2: expanded presentation of some arguments,
IJMP
The Littlest Higgs
We present an economical theory of natural electroweak symmetry breaking,
generalizing an approach based on deconstruction. This theory is the smallest
extension of the Standard Model to date that stabilizes the electroweak scale
with a naturally light Higgs and weakly coupled new physics at TeV energies.
The Higgs is one of a set of pseudo Goldstone bosons in an
nonlinear sigma model. The symmetry breaking scale is around a TeV, with
the cutoff \Lambda \lsim 4\pi f \sim 10 TeV. A single electroweak doublet,
the ``little Higgs'', is automatically much lighter than the other pseudo
Goldstone bosons. The quartic self-coupling for the little Higgs is generated
by the gauge and Yukawa interactions with a natural size ,
while the top Yukawa coupling generates a negative mass squared triggering
electroweak symmetry breaking. Beneath the TeV scale the effective theory is
simply the minimal Standard Model. The new particle content at TeV energies
consists of one set of spin one bosons with the same quantum numbers as the
electroweak gauge bosons, an electroweak singlet quark with charge 2/3, and an
electroweak triplet scalar. One loop quadratically divergent corrections to the
Higgs mass are cancelled by interactions with these additional particles.Comment: 15 pages. References added. Corrected typos in the discussion of the
top Yukawa couplin
Two-Higgs doublet models from TeV-scale supersymmetric extra U(1) models
We investigate the reduction of a general TeV-scale supersymmetric extra U(1)
model to a 2HDM below the TeV- scale through the tree level non-decoupling.
Portions of the parameter space of the extra U(1) model appropriate for
obtaining a 2HDM are identified. Various properties of the resulting 2HDM are
connected to the parameter space of the underlying model. PACS: 12.60.Jv,
12.60.Cn, 12.60.FrComment: 12 pages, 4 postscript figures, to appear in Phys. Rev.
Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability
Coherent Synchrotron Radiation (CSR) can play an important role by not only
increasing the energy spread and emittance of a beam, but also leading to a
potential instability. Previous studies of the CSR induced longitudinal
instability were carried out for the CSR impedance due to dipole magnets.
However, many storage rings include long wigglers where a large fraction of the
synchrotron radiation is emitted. This includes high-luminosity factories such
as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future
linear colliders. In this paper, the instability due to the CSR impedance from
a wiggler is studied assuming a large wiggler parameter . The primary
consideration is a low frequency microwave-like instability, which arises near
the pipe cut-off frequency. Detailed results are presented on the growth rate
and threshold for the damping rings of several linear collider designs.
Finally, the optimization of the relative fraction of damping due to the
wiggler systems is discussed for the damping rings.Comment: 10 pages, 7 figure
- …