301 research outputs found

    Physical properties of sediments from Keathley Canyon and Atwater Valley, JIP Gulf of Mexico gas hydrate drilling program

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 25 (2008): 896-905, doi:10.1016/j.marpetgeo.2008.01.018.Physical property measurements and consolidation behavior are different between sediments from Atwater Valley and Keathley Canyon in the northern Gulf of Mexico. Void ratio and bulk density of Atwater Valley sediment from a seafloor mound (holes ATM1 and ATM2) show little effective stress (or depth) dependence to 27 meters below seafloor (mbsf), perhaps owing to fluidized transport through the mound itself with subsequent settling onto the seafloor or mound flanks. Off-mound sediments (hole AT13-2) have bulk physical properties that are similar to mound sediments above 27 mbsf, but void ratio and porosity decrease below that depth. Properties of shallow (<50 mbsf) Keathley Canyon sediments (KC151-3) change with increasing effective stress (or depth) compared to Atwater Valley, but vary little below that depth. Organic carbon is present in concentrations between typical near-shore and deep-sea sediments. Organic carbon-to-nitrogen ratios suggest that the organic matter contained in Atwater Valley off-mound and mound sites came from somewhat different sources. The difference in organic carbon-to-nitrogen ratios between Atwater Valley and Keathley Canyon is more pronounced. At Keathley Canyon a more terrigenous source of the organic matter is indicated. Grain sizes are typically silty clay or clay within the two basins reflecting similar transport energy. However, the range in most shallow sediment properties is significantly different between the two basins. Bulk density profiles agree with logging results in Atwater Valley and Keathley Canyon. Agreement between lab-derived and logging-derived properties supports using logging data to constrain bulk physical properties where cores were not collected.Support of this research was provided by the USGS Coastal and Marine Geology Program, the USGS Energy Program, and the National Energy Technology Laboratory

    Sumatra Seismogenic Zone - The role of input materials in shallow seismogenic slip and forearc plateau development

    Get PDF
    Drilling the input materials of the north Sumatran subduction zone, part of the 5000 km long Sunda subduction zone system and the origin of the Mw ~9.2 earthquake and tsunami that devastated coastal communities around the Indian Ocean in 2004, was designed to groundtruth the material properties causing unexpectedly shallow seismogenic slip and a distinctive forearc prism structure. The intriguing seismogenic behavior and forearc structure are not well explained by existing models or by relationships observed at margins where seismogenic slip typically occurs farther landward. The input materials of the north Sumatran subduction zone are a distinctively thick (as thick as 4–5 km) succession of primarily Bengal-Nicobar Fan–related sediments. The correspondence between the 2004 rupture location and the overlying prism plateau, as well as evidence for a strengthened input section, suggest the input materials are key to driving the distinctive slip behavior and long-term forearc structure. During Expedition 362, two sites on the Indian oceanic plate ~250 km southwest of the subduction zone, Sites U1480 and U1481, were drilled, cored, and logged to a maximum depth of 1500 meters below seafloor. The succession of sediment/rocks that will develop into the plate boundary detachment and will drive growth of the forearc were sampled, and their progressive mechanical, frictional, and hydrogeological property evolution will be analyzed through postcruise experimental and modeling studies. Large penetration depths with good core recovery and successful wireline logging in the challenging submarine fan materials will enable evaluation of the role of thick sedimentary subduction zone input sections in driving shallow slip and amplifying earthquake and tsunami magnitudes, at the Sunda subduction zone and globally at other subduction zones where submarine fan–influenced sections are being subducted

    Late Miocene wood recovered in Bengal–Nicobar submarine fan sediments by IODP Expedition 362

    Get PDF
    Drilling and coring during IODP Expedition 362 in the eastern Indian Ocean encountered probably the largest wood fragment ever recovered in scientific ocean drilling. The wood is Late Miocene in age and buried beneath ∼800 m of siliciclastic mud and sand of the Bengal–Nicobar Fan. The wood is well preserved. Possible origins include the hinterland to the north, with sediment transported as part of the submarine fan sedimentary processes, or the Sunda subduction zone to the east, potentially as a megathrust tsunami deposit

    Addressing Geohazards Through Ocean Drilling

    Get PDF

    Detection and Production of Methane Hydrate

    Get PDF
    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation

    Biogenesis of JC Polyomavirus Associated Extracellular Vesicles

    Get PDF
    JC polyomavirus (JCPyV) is a small, non-enveloped virus that persists in the kidney in about half the adult population. In severely immune-compromised individuals JCPyV causes the neurodegenerative disease progressive multifocal leukoencephalopathy (PML) in the brain. JCPyV has been shown to infect cells by both direct and indirect mechanisms, the latter involving extracellular vesicle (EV) mediated infection. While direct mechanisms of infection are well studied indirect EV mediated mechanisms are poorly understood. Using a combination of chemical and genetic approaches we show that several overlapping intracellular pathways are responsible for the biogenesis of virus containing EV. Here we show that targeting neutral sphingomyelinase 2 (nSMase2) with the drug cambinol decreased the spread of JCPyV over several viral life cycles. Genetic depletion of nSMase2 by either shRNA or CRISPR/Cas9 reduced EV-mediated infection. Individual knockdown of seven ESCRT-related proteins including HGS, ALIX, TSG101, VPS25, VPS20, CHMP4A, and VPS4A did not significantly reduce JCPyV associated EV (JCPyV(+) EV) infectivity, whereas knockdown of the tetraspanins CD9 and CD81 or trafficking and/or secretory autophagy-related proteins RAB8A, RAB27A, and GRASP65 all significantly reduced the spread of JCPyV and decreased EV-mediated infection. These findings point to a role for exosomes and secretory autophagosomes in the biogenesis of JCPyV associated EVs with specific roles for nSMase2, CD9, CD81, RAB8A, RAB27A, and GRASP65 proteins
    • …
    corecore