5,648 research outputs found

    Real-time co-ordinated resource management in a computational enviroment

    Get PDF
    Design co-ordination is an emerging engineering design management philosophy with its emphasis on timeliness and appropriateness. Furthermore, a key element of design coordination has been identified as resource management, the aim of which is to facilitate the optimised use of resources throughout a dynamic and changeable process. An approach to operational design co-ordination has been developed, which incorporates the appropriate techniques to ensure that the aim of co-ordinated resource management can be fulfilled. This approach has been realised within an agent-based software system, called the Design Coordination System (DCS), such that a computational design analysis can be managed in a coherent and co-ordinated manner. The DCS is applied to a computational analysis for turbine blade design provided by industry. The application of the DCS involves resources, i.e. workstations within a computer network, being utilised to perform the computational analysis involving the use of a suite of software tools to calculate stress and vibration characteristics of turbine blades. Furthermore, the application of the system shows that the utilisation of resources can be optimised throughout the computational design analysis despite the variable nature of the computer network

    A methodology for design coordination in a distributed computing environment

    Get PDF
    At the conceptual stage of the design process it is increasingly common that analysis tools are involved in the evaluation of a large number of alternative designs. Designers use such analysis tools to assist with large scale concept evaluations and the prediction of good initial designs. Consequently there exists a need to coordinate these analysis tools to enable the early stage of design to be performed in a timely and efficient manner. This paper describes a generic methodology that allows the management and coordination of design analysis tools. A Computer Aided Design tool, namely the Design Coordination System (DCS), has been developed to assist the designer in performing computational analysis in a distributed computing environment. Within the DCS, a collection of design agents act as members of a multi-functional team operating in a cooperative and coordinated manner in order to satisfy the objective of efficiently performing the design analysis

    A generic coordination approach applied to a manufacturing environment

    Get PDF
    This paper describes a generic coordination approach applied to the field of manufacturing engineering. The objective of the coordination mechanism with respect to this application is twofold. Firstly, it is shown that utilising the developed system can result in the efficient organisation of processes leading to a near optimum time taken to manufacture a number of artefacts. Secondly, successful operation of the system in this environment will demonstrate that the approach is generic in nature. The results already achieved using this system within a computational analysis environment supports this hypothesis

    A methodology for prospective operational design co-ordination

    Get PDF
    Engineering companies are continually faced with the challenge of how best to utilise their design team given some design project. Decisions regarding how to distribute the project workload amongst the members of the design team are the responsibility of a project manager who, in order to do this, often relies upon previous experience and/or the support of some planning tool. Furthermore, a project manager rarely has the opportunity to assess the capability of the design team against the current work load in order to determine what, if any, alterations couldbe made to the team to facilitate appropriate reductions in project time and cost.This paper proposes a mathematical-based methodology aimed at identifying shortfalls in design teams, which if remedied would result in a more efficient project in terms of time and cost. The methodology provides a means of identifying those skills within the design team,with respect to the outstanding work load, in which improvements would have the greatest influence on reducing time and cost. In addition, the methodology employs a genetic algorithm for the purpose of scheduling tasks to be undertaken by potential design teams. The methodology is applied to two practical case studies provided by engineering industry.The first case study involves the assessment of a multi-disciplined design team consisting of single-skilled engineers. In contrast, the second case study entails the assessment of multiskilled engineers within a multi-disciplined design team. As a result of applying the methodology to the case studies, potential improvement to the design teams are identified and, subsequently, evaluated by observing their effects

    Microorganisms in solid materials. phases i, ii, iii, and iv final summary report

    Get PDF
    Culturing techniques for detection of viable microorganism inoculated into solid material

    A flight investigation of simulated data link communications during single-pilot IFR flight

    Get PDF
    A Flight Data Console (FDC) was developed to allow simulation of a digital communications link to replace the current voice communication system used in air traffic control (ATC). The voice system requires manipulation of radio equipment, read-back of clearances, and mental storage of critical information items, all contributing to high workload, particularly during single-pilot operations. This was an inflight study to determine how a digital communications system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. Results show that instrument flight, including approach and landing, can be accomplished quite effectively using a digital data link system for ATC communications. All pilots expressed a need for a back-up voice channel. When included, this channel was used sparingly and principally to confirm any item of information about which there might be uncertainty

    Real-time co-ordinated scheduling using a genetic algorithm

    Get PDF
    Real-time co-ordination is an emerging approach to operational engineering management aimed at being more comprehensive and widely applicable than existing approaches. Schedule management is a key characteristic of operational co-ordination related to managing the planning and dynamic assignment of tasks to resources, and the enactment of the resulting schedules, throughout a changeable process. This paper presents the application of an agent-oriented system, called the Design Co-ordination System, to an industrial case study in order to demonstrate the appropriate use of a genetic algorithm for the purpose of real-time scheduling. The application demonstrates that real-time co-ordinated scheduling can provide significant reductions in time to complete the computational design process

    EFFECTS OF ALTERNATIVE FARM PROGRAMS AND LEVELS OF PRICE VARIABILITY ON TEXAS COTTON FARMS

    Get PDF
    This study examines the effects of alternative government farm programs and hypothetical price variability levels on two Texas cotton farms which were simulated stochastically over a 10-year period. Results indicate that a combination of high price variability and participation in government programs stimulates growth and wealth accumulation.Public Economics,

    A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 1: Experimental design and initial test

    Get PDF
    A Flight Data Console simulation of a digital communication link to replace the current voice communication system used in air traffic control (ATC) was developed. The study determined how a digital communications system reduces cockpit workload, improve, flight proficiency, and is acceptable to general aviation pilots. It is shown that instrument flight, including approach and landing, can be accomplished by using a digital data link system for ATC communication

    A preliminary approach for modelling and planning the composition of engineering project teams

    Get PDF
    Managing engineering projects is a complex activity involving multiskilled engineers, who have varying levels of capability in these skills. This paper outlines a preliminary approach to modelling and planning the composition of engineering project teams, taking into consideration the skills and capabilities of engineers and the nature of the project work to be undertaken. The approach includes a simple means of identifying engineers' skills and then quantifying their level of capability in these skills. Subsequently, the approach uses a genetic algorithm along with a task-to-engineer allocation strategy to establish how best to utilize the mix of skills and capabilities of the team of engineers assigned to the project under consideration. The approach also provides a means of identifying imbalances or shortfalls in skill and capability within a team, and the formulation of an appropriate development strategy to redress/overcome them. An application of the approach to an industrial case study is presented, which led to significant potential reductions in expected project duration and labour cost. These potential reductions could be achieved by appropriately modelling engineers' skills and capabilities, and redressing the imbalance within the team through proposed changes to its composition
    • 

    corecore