224 research outputs found

    Gen bet: a plain English summary of research into gambling and young people.

    Get PDF

    Magnetic field induced rotation of the d-vector in Sr_2RuO_4

    Full text link
    The superconductor Sr_2RuO_4 is widely believed to be a spin triplet system with a chiral order parameter analogous to the A phase of superfluid helium-3. The best evidence for this pairing state is that the Knight shift or spin susceptibility measured in neutron scattering is constant below T_c, unlike in a spin-singlet superconductor. The original Knight shift and neutron scattering measurements were performed for magnetic fields aligned in the ruthenate a-b plane. These would be consistent with a triplet d-vector d{k} aligned along the c-axis. However recently the Knight shift for fields along c was also found to be constant below T_c, which is not expected for this symmetry state. In this paper we show that while spin-orbit interaction stabilises the c-axis oriented d-vector, it is possible that only a very small external B field may be sufficient to rotate the d-vector into the a-b plane. In this case the triplet pairing model remains valid. We discuss characteristics of the transition and the prospects to detect it in thermodynamic quantities.Comment: 2 pages, 1 figure, Proceedings of the M2S-HTSC conference in Dresden. Requires elsart.sty (included

    Horizontal line nodes in superconducting Sr2RuO4

    Full text link
    We analyze the possibilities of triplet pairing in Sr2RuO4 based upon an idea of interlayer coupling. We have considered two models differing by the effective interactions. In one model the quasi-particle spectra have horizontal line nodes on all three Fermi surface sheets, while in the other the spectra have line or point nodes on the alpha and beta sheets and no nodes on the gamma sheet. Both models reproduce the experimental heat capacity and penetration depth results, but the calculated specific heat is sightly closer to experiment in the second solution with nodes only on the alpha and beta sheets.Comment: 9 pages, 6 figure

    The Theoretical Astrophysical Observatory: Cloud-Based Mock Galaxy Catalogues

    Full text link
    We introduce the Theoretical Astrophysical Observatory (TAO), an online virtual laboratory that houses mock observations of galaxy survey data. Such mocks have become an integral part of the modern analysis pipeline. However, building them requires an expert knowledge of galaxy modelling and simulation techniques, significant investment in software development, and access to high performance computing. These requirements make it difficult for a small research team or individual to quickly build a mock catalogue suited to their needs. To address this TAO offers access to multiple cosmological simulations and semi-analytic galaxy formation models from an intuitive and clean web interface. Results can be funnelled through science modules and sent to a dedicated supercomputer for further processing and manipulation. These modules include the ability to (1) construct custom observer light-cones from the simulation data cubes; (2) generate the stellar emission from star formation histories, apply dust extinction, and compute absolute and/or apparent magnitudes; and (3) produce mock images of the sky. All of TAO's features can be accessed without any programming requirements. The modular nature of TAO opens it up for further expansion in the future.Comment: 17 pages, 11 figures, 2 tables; accepted for publication in ApJS. The Theoretical Astrophysical Observatory (TAO) is now open to the public at https://tao.asvo.org.au/. New simulations, models and tools will be added as they become available. Contact [email protected] if you have data you would like to make public through TAO. Feedback and suggestions are very welcom

    Transport and the Order Parameter of Superconducting Sr2_2RuO4_4

    Full text link
    Recent experiments make it appear more likely that the order parameter of the unconventional superconductor Sr2_2RuO4_4 has a spin-triplet ff-wave symmetry. We study ultrasonic absorption and thermal conductivity of superconducting Sr2_2RuO4_4 and fit to the recent data for various ff-wave candidates. It is shown that only fx2y2f_{x^2-y^2}-wave symmetry can account qualitatively for the transport data.Comment: 4 pages, 2 figures, references added and update

    Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic Salmonella enterica serovar Typhimurium clone

    Get PDF
    Epidemic and pandemic clones of bacterial pathogens with distinct characteristics continually emerge, replacing those previously dominant through mechanisms that remain poorly characterized. Here, whole-genome-sequencing-powered epidemiology linked horizontal transfer of a virulence gene, sopE, to the emergence and clonal expansion of a new epidemic Salmonella enterica serovar Typhimurium (S. Typhimurium) clone. The sopE gene is sporadically distributed within the genus Salmonella and rare in S. enterica Typhimurium lineages, but was acquired multiple times during clonal expansion of the currently dominant pandemic monophasic S. Typhimurium sequence type (ST) 34 clone. Ancestral state reconstruction and time-scaled phylogenetic analysis indicated that sopE was not present in the common ancestor of the epidemic clade, but later acquisition resulted in increased clonal expansion of sopE-containing clones that was temporally associated with emergence of the epidemic, consistent with increased fitness. The sopE gene was mainly associated with a temperate bacteriophage mTmV, but recombination with other bacteriophage and apparent horizontal gene transfer of the sopE gene cassette resulted in distribution among at least four mobile genetic elements within the monophasic S. enterica Typhimurium ST34 epidemic clade. The mTmV prophage lysogenic transfer to other S. enterica serovars in vitro was limited, but included the common pig-associated S. enterica Derby (S. Derby). This may explain mTmV in S. Derby co-circulating on farms with monophasic S. Typhimurium ST34, highlighting the potential for further transfer of the sopE virulence gene in nature. We conclude that whole-genome epidemiology pinpoints potential drivers of evolutionary and epidemiological dynamics during pathogen emergence, and identifies targets for subsequent research in epidemiology and bacterial pathogenesis

    Anisotropy in the Antiferromagnetic Spin Fluctuations of Sr2RuO4

    Full text link
    It has been proposed that Sr_2RuO_4 exhibits spin triplet superconductivity mediated by ferromagnetic fluctuations. So far neutron scattering experiments have failed to detect any clear evidence of ferromagnetic spin fluctuations but, instead, this type of experiments has been successful in confirming the existence of incommensurate spin fluctuations near q=(1/3 1/3 0). For this reason there have been many efforts to associate the contributions of such incommensurate fluctuations to the mechanism of its superconductivity. Our unpolarized inelastic neutron scattering measurements revealed that these incommensurate spin fluctuations possess c-axis anisotropy with an anisotropic factor \chi''_{c}/\chi''_{a,b} of \sim 2.8. This result is consistent with some theoretical ideas that the incommensurate spin fluctuations with a c-axis anisotropy can be a origin of p-wave superconductivity of this material.Comment: 5 pages, 3 figures; accepted for publication in PR

    Detailed study of the ac susceptibility of Sr2RuO4 in oriented magnetic fields

    Get PDF
    We have investigated the ac susceptibility of the spin triplet superconductor Sr2_2RuO4_4 as a function of magnetic field in various directions at temperatures down to 60 mK. We have focused on the in-plane field configuration (polar angle θ90\theta \simeq 90^{\circ}), which is a prerequisite for inducing multiple superconducting phases in Sr2_2RuO4_4. We have found that the previous attribution of a pronounced feature in the ac susceptibility to the second superconducting transition itself is not in accord with recent measurements of the thermal conductivity or of the specific heat. We propose that the pronounced feature is a consequence of additional involvement of vortex pinning originating from the second superconducting transition.Comment: Accepted for publication in Phys. Rev.
    corecore