260 research outputs found
Missing energy in black hole production and decay at the Large Hadron Collider
Black holes could be produced at the Large Hadron Collider in TeV-scale
gravity scenarios. We discuss missing energy mechanisms in black hole
production and decay in large extra-dimensional models. In particular, we
examine how graviton emission into the bulk could give the black hole enough
recoil to leave the brane. Such a perturbation would cause an abrupt
termination in Hawking emission and result in large missing-energy signatures.Comment: addressed reviewer comments and updated reference
Charge and mass effects on the evaporation of higher-dimensional rotating black holes
To study the dynamics of discharge of a brane black hole in TeV gravity
scenarios, we obtain the approximate electromagnetic field due to the charged
black hole, by solving Maxwell's equations perturbatively on the brane. In
addition, arguments are given for brane metric corrections due to backreaction.
We couple brane scalar and brane fermion fields with non-zero mass and charge
to the background, and study the Hawking radiation process using well known low
energy approximations as well as a WKB approximation in the high energy limit.
We argue that contrary to common claims, the initial evaporation is not
dominated by fast Schwinger discharge.Comment: Published version. Minor typos corrected. 29 pages, 5 figure
Brane decay of a (4+n)-dimensional rotating black hole: spin-0 particles
In this work, we study the `scalar channel' of the emission of Hawking
radiation from a (4+n)-dimensional, rotating black hole on the brane. We
numerically solve both the radial and angular part of the equation of motion
for the scalar field, and determine the exact values of the absorption
probability and of the spheroidal harmonics, respectively. With these, we
calculate the particle, energy and angular momentum emission rates, as well as
the angular variation in the flux and power spectra -- a distinctive feature of
emission during the spin-down phase of the life of the produced black hole. Our
analysis is free from any approximations, with our results being valid for
arbitrarily large values of the energy of the emitted particle, angular
momentum of the black hole and dimensionality of spacetime. We finally compute
the total emissivities for the number of particles, energy and angular momentum
and compare their relative behaviour for different values of the parameters of
the theory.Comment: 24 pages, 13 figure
Brane Decay of a (4+n)-Dimensional Rotating Black Hole. II: spin-1 particles
The present works complements and expands a previous one, focused on the
emission of scalar fields by a (4+n)-dimensional rotating black hole on the
brane, by studying the emission of gauge fields on the brane from a similar
black hole. A comprehensive analysis of the particle, energy and angular
momentum emission rates is undertaken, for arbitrary angular momentum of the
black hole and dimensionality of spacetime. Our analysis reveals the existence
of a number of distinct features associated with the emission of spin-1 fields
from a rotating black hole on the brane, such as the behaviour and magnitude of
the different emission rates, the angular distribution of particles and energy,
the relative enhancement compared to the scalar fields, and the magnitude of
the superradiance effect. Apart from their theoretical interest, these features
can comprise clear signatures of the emission of Hawking radiation from a
brane-world black hole during its spin-down phase upon successful detection of
this effect during an experiment.Comment: 35 pages, 19 figures, Latex fil
Brane Decay of a (4+n)-Dimensional Rotating Black Hole. III: spin-1/2 particles
In this work, we have continued the study of the Hawking radiation on the
brane from a higher-dimensional rotating black hole by investigating the
emission of fermionic modes. A comprehensive analysis is performed that leads
to the particle, power and angular momentum emission rates, and sheds light on
their dependence on fundamental parameters of the theory, such as the spacetime
dimension and angular momentum of the black hole. In addition, the angular
distribution of the emitted modes, in terms of the number of particles and
energy, is thoroughly studied. Our results are valid for arbitrary values of
the energy of the emitted particles, dimension of spacetime and angular
momentum of the black hole, and complement previous results on the emission of
brane-localised scalars and gauge bosons.Comment: Latex file, JHEP style, 34 pages, 16 figures Energy range in plots
increased, minor changes, version published in JHE
Testing Lorentz invariance of dark matter
We study the possibility to constrain deviations from Lorentz invariance in
dark matter (DM) with cosmological observations. Breaking of Lorentz invariance
generically introduces new light gravitational degrees of freedom, which we
represent through a dynamical timelike vector field. If DM does not obey
Lorentz invariance, it couples to this vector field. We find that this coupling
affects the inertial mass of small DM halos which no longer satisfy the
equivalence principle. For large enough lumps of DM we identify a (chameleon)
mechanism that restores the inertial mass to its standard value. As a
consequence, the dynamics of gravitational clustering are modified. Two
prominent effects are a scale dependent enhancement in the growth of large
scale structure and a scale dependent bias between DM and baryon density
perturbations. The comparison with the measured linear matter power spectrum in
principle allows to bound the departure from Lorentz invariance of DM at the
per cent level.Comment: 42 pages, 9 figure
The Dynamical Cluster Approximation: Non-Local Dynamics of Correlated Electron Systems
We recently introduced the dynamical cluster approximation(DCA), a new
technique that includes short-ranged dynamical correlations in addition to the
local dynamics of the dynamical mean field approximation while preserving
causality. The technique is based on an iterative self-consistency scheme on a
finite size periodic cluster. The dynamical mean field approximation (exact
result) is obtained by taking the cluster to a single site (the thermodynamic
limit). Here, we provide details of our method, explicitly show that it is
causal, systematic, -derivable, and that it becomes conserving as the
cluster size increases. We demonstrate the DCA by applying it to a Quantum
Monte Carlo and Exact Enumeration study of the two-dimensional Falicov-Kimball
model. The resulting spectral functions preserve causality, and the spectra and
the CDW transition temperature converge quickly and systematically to the
thermodynamic limit as the cluster size increases.Comment: 19 pages, 13 postscript figures, revte
Influence of a Brane Tension on Phantom and Massive Scalar Field Emission
We elaborate the signature of the extra dimensions and brane tension in the
process of phantom and massive scalar emission in the spacetime of
(4+n)-dimensional tense brane black hole. Absorption cross section, luminosity
of Hawking radiation and cross section in the low-energy approximation were
found. We envisage that parameter connected with the existence of a brane
imprints its role in the Hawking radiation of the considered fields.Comment: 7 pages, * figures, RevTex, to be published in General Relativity and
Gravitatio
Greybody Factors for Rotating Black Holes on Codimension-2 Branes
We study the absorption probability and Hawking radiation of the scalar field
in the rotating black holes on codimension-2 branes. We find that finite brane
tension modifies the standard results in Hawking radiation if compared with the
case when brane tension is completely negligible. We observe that the rotation
of the black hole brings richer physics. Nonzero angular momentum triggers the
super-radiance which becomes stronger when the angular momentum increases. We
also find that rotations along different angles influence the result in
absorption probability and Hawking radiation. Compared with the black hole
rotating orthogonal to the brane, in the background that black hole spins on
the brane, its angular momentum brings less super-radiance effect and the brane
tension increases the range of frequency to accommodate super-radiance. These
information can help us know more about the rotating codimension-2 black holes.Comment: 16 pages, 7 figures, minor modification, accepted for publication in
JHE
Spectral and transport properties of doped Mott-Hubbard systems with incommensurate magnetic order
We present spectral and optical properties of the Hubbard model on a
two-dimensional square lattice using a generalization of dynamical mean-field
theory to magnetic states in finite dimension. The self-energy includes the
effect of spin fluctuations and screening of the Coulomb interaction due to
particle-particle scattering. At half-filling the quasiparticles reduce the
width of the Mott-Hubbard `gap' and have dispersions and spectral weights that
agree remarkably well with quantum Monte Carlo and exact diagonalization
calculations. Away from half-filling we consider incommensurate magnetic order
with a varying local spin direction, and derive the photoemission and optical
spectra. The incommensurate magnetic order leads to a pseudogap which opens at
the Fermi energy and coexists with a large Mott-Hubbard gap. The quasiparticle
states survive in the doped systems, but their dispersion is modified with the
doping and a rigid band picture does not apply. Spectral weight in the optical
conductivity is transferred to lower energies and the Drude weight increases
linearly with increasing doping. We show that incommensurate magnetic order
leads also to mid-gap states in the optical spectra and to decreased scattering
rates in the transport processes, in qualitative agreement with the
experimental observations in doped systems. The gradual disappearence of the
spiral magnetic order and the vanishing pseudogap with increasing temperature
is found to be responsible for the linear resistivity. We discuss the possible
reasons why these results may only partially explain the features observed in
the optical spectra of high temperature superconductors.Comment: 22 pages, 18 figure
- …