49 research outputs found

    Investigation of Drug Response in Diffuse Large B-Cell Lymphoma

    Get PDF

    Navigating in Higher Education – NiHE: Et blik fra studerende og undervisere på faglige, sociale og personlige perspektiver på undervisningen

    Get PDF
    Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur, Informationsteknologi, Biologi, Fysik, Medicin, Odontologi og Folkesundhedsvidenskab. NiHE undersøgelsen er gennemført i efteråret 2015 og vinter 2016, og den har til formål at generere data til almen undervisningsudvikling og rummer derfor både faglige, sociale og personlige perspektiver på undervisning.

    Expression of NOTCH3 exon 16 differentiates Diffuse Large B-cell Lymphoma into molecular subtypes and is associated with prognosis

    Get PDF
    Abstract Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with diverse clinical presentation and outcome. Bio-clinical prognostic models including oncogene expression and cell-of-origin phenotyping has been developed, however, approximately 30% of all patients still die from their disease, illustrating the need for additional prognostic biomarkers associating oncogenesis and phenotypic subclasses. Hence, we tested if alternative splice variations have biomarker potential. Initial alternative splicing analysis of human exon array from clinical DLBCL samples identified candidate genes. Experimental validation by ddPCR was performed in a DLBCL cohort classified into ABC/GCB subclasses, B-cell associated gene signatures (BAGS: naive, centroblast, centrocyte, memory, and plasmablast), and vincristine resistant gene signatures. Prognostic potential was assessed for aberrantly spliced transcripts. Thus, NOTCH3 was identified as alternatively spliced, with differential exon 16 depletion (−exon 16) between differentiation associated BAGS subtypes. Predicted vincristine resistant patients of the GCB subclass had significantly downregulated NOTCH3 −exon 16 transcript expression and tended to display adverse overall survival for R-CHOP treated patients. In conclusion, we have identified a specific alternatively spliced NOTCH3 event that differentiate molecular subtypes of DLBCL and display prognostic and predictive biomarker potential in GCB DLBCL

    Hsp90 inhibition sensitizes DLBCL cells to cisplatin

    Get PDF
    PURPOSE: Platinum-containing therapy is standard treatment for relapsed Diffuse Large B-Cell Lymphoma (DLBCL). However, the efficacy of treatment is limited by drug resistance leading to relapse. Cisplatin resistance has been linked to impairments of the DNA damage response, and several DNA repair proteins have been identified as clients of the molecular chaperone Hsp90. Here, we investigated the combinatory treatment of cisplatin and the Hsp90 inhibitor, 17AAG, in DLBCL cells to evaluate if inhibition of Hsp90 could sensitize DLBCL cells to cisplatin treatment. METHODS: Cell viability was assessed for cisplatin and 17AAG as monotherapies and for 25 different combinations in 7 DLBCL cell lines, where the Bliss Independence Model and the Combination Index were applied to assess their interaction. Induction of apoptosis and DNA damage response were evaluated by measuring Annexin V and γH2AX levels after 48 h of exposure. RESULTS: 17AAG synergized with cisplatin in DLBCL cells as detected in both interaction assessment models, resulting in a lower viability after 48 h for the combination-treated cells compared to both vehicle and single drug-treated cells. The combination also induced a stronger apoptotic response and an increase in DNA damage in 17AAG, cisplatin- and combination-treated cells compared to vehicle-treated cells, with the effect of the combination generally being higher than compared to both single drugs. CONCLUSION: This study demonstrates that 17AAG sensitizes DLBCL cells to cisplatin treatment. This effect is correlated with increased apoptotic and DNA damage response, potentially mediated by downregulation of Hsp90 clients in DNA repair pathways. Thus, cisplatin resistance could plausibly be overcome by combining the treatment with an Hsp90 inhibiting drug. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00280-022-04407-5
    corecore