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RESEARCH ARTICLE Open Access

MicroRNAs associated to single drug
components of R-CHOP identifies diffuse
large B-cell lymphoma patients with poor
outcome and adds prognostic value to the
international prognostic index
Hanne Due1,2†, Rasmus Froberg Brøndum1,3†, Ken H. Young4, Martin Bøgsted1,2,3 and Karen Dybkær1,2,3*

Abstract

Background: Treatment resistance is a major clinical challenge of diffuse large B-cell lymphoma (DLBCL) where
approximately 40% of the patients have refractory disease or relapse. Since DLBCL is characterized by great clinical
and molecular heterogeneity, the purpose of the present study was to investigate whether miRNAs associated to
single drug components of R-CHOP can improve robustness of individual markers and serve as a prognostic
classifier.

Methods: Fifteen DLBCL cell lines were tested for sensitivity towards single drug compounds of the standard
treatment R-CHOP: rituximab (R), cyclophosphamide (C), doxorubicin (H), and vincristine (O). For each drug, cell
lines were ranked using the area under the dose-response curve and grouped as either sensitive, intermediate or
resistant. Baseline miRNA expression data were obtained for each cell line in untreated condition, and differential
miRNA expression analysis between sensitive and resistant cell lines identified 43 miRNAs associated to growth
response after exposure towards single drugs of R-CHOP. Using the Affymetrix HG-U133 platform, expression levels
of miRNA precursors were assessed in 701 diagnostic DLBCL biopsies, and miRNA-panel classifiers predicting
disease progression were build using multiple Cox regression or random survival forest. Classifiers were validated
and ranked by repeated cross-validation.

Results: Prognostic accuracies were assessed by Brier Scores and time-varying area under the ROC curves, which
revealed better performance of multivariate Cox models compared to random survival forest models. The Cox
model including miR-146a, miR-155, miR-21, miR-34a, and miR-23a~miR-27a~miR-24-2 cluster performed the best
and successfully stratified GCB-DLBCL patients into high- and low-risk of disease progression. In addition,
combination of the Cox miRNA-panel and IPI substantially increased prognostic performance in GCB classified
patients.

Conclusion: As a proof of concept, we found that expression data of drug associated miRNAs display prognostic
utility and adding these to IPI improves prognostic stratification of GCB-DLBCL patients treated with R-CHOP.
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Background
Diffuse large B-cell lymphoma (DLBCL) is the most
common type of malignant lymphoma, accounting for
30–40% of all newly diagnosed non-Hodgkin lymph-
omas. It is a highly aggressive and heterogeneous dis-
ease with respect to clinical presentation, tumor
biology, and prognosis [1]. Gene expression profiling
(GEP) enables cell-of-origin classification of DLBCL
into two histologically indistinguishable molecular
subclasses: the activated B-cell-like (ABC) and the
germinal center B-cell-like (GCB), which reflect a
subset of the normal B-cell differentiation stages.
These subclasses differ in pathogenesis, genetic aber-
rations, and survival outcome [2, 3] and have entered
clinical prognostic evaluation, complementing the
international prognostic index (IPI), which has been
the gold standard for decades [3, 4].
First-line treatment for newly diagnosed DLBCL pa-

tients is a multi-agent regimen combining the anti-CD20
monoclonal antibody rituximab with the three chemo-
therapeutics cyclophosphamide, doxorubicin, and vin-
cristine, and the corticosteroid prednisone (R-CHOP).
Although addition of rituximab to the regimen has im-
proved treatment outcome of DLBCL substantially, up
to 40% of patients have refractory disease or relapse after
initial response to therapy due to drug-specific molecu-
lar resistance [5–7]. Study of the pharmacological princi-
ples underlying the R-CHOP regimen revealed no
synergistic interaction but very low cross-resistance,
showing a strong combination of independently effective
drugs without overlapping mechanisms of resistance [8].
Thus, identification of biomarkers predictive for single
drug components of R-CHOP is of great importance
when attempting to improve clinical outcome.
microRNAs (miRNAs) are endogenous, small non-

coding RNA molecules regulating gene expression at
the post-transcriptional level [9]. Compelling evidence
has demonstrated that miRNA expression is dysregu-
lated in human cancers, with several miRNAs func-
tioning as oncogenes or tumor suppressors [10].
Deregulation of miRNAs occurs early and consistently
in tumor development and progression, and thus con-
stitutes a promising source for discovery of novel bio-
markers. Indeed, specific miRNAs and global miRNA
expression profiles have shown significant potential as
diagnostic as well as prognostic biomarkers for
DLBCL [11–13], and several studies support their role
in chemotherapy resistance [14–16]. Since DLBCL is
a highly heterogeneous disease at the molecular level,
we hypothesized that a panel of miRNAs associated
to individual components of R-CHOP can improve
robustness of individual markers and serve as a
prognostic classifier predicting disease progression in
DLBCL patients.

To test this hypothesis, we determined the global
miRNA transcriptome and performed systematic dose-
response drug screens in a DLBCL-specific cell line panel
to identify single drug associated miRNAs. Applying
multivariate Cox regression and random survival forest
techniques, prognostic miRNA-panel classifiers were de-
veloped and the predictive accuracies were subsequently
evaluated by Brier scores and time varying area under the
ROC curves.

Methods
Cell lines
Fifteen human DLBCL-derived cell lines DB, NU-DHL-1,
NU-DUL-1, MC-116, SU-DHL-4, SU-DHL-5 (DSMZ,
German Collection of Microorganisms and Cell Cultures)
and FARAGE, HBL-1, OCI-Ly3, OCI-Ly7, OCI-Ly8, OCI-
Ly19, RIVA, SU-DHL-8, and U2932 (Provided by Dr. Jose
A. Martinez-Climent, Molecular Oncology Laboratory,
University of Navarra, Pamplona, Spain) were included
(Table 1). The cell lines were cultured under standard
conditions at 37 °C in humidified atmosphere of 95% air
and 5% CO2 with RPMI1640 medium containing 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin (P/S)
for no longer than 20 passages. All cell lines were authen-
ticated by DNA barcoding as previously described [18]
and examined for mycoplasma infection when terminating
their culturing period.

Clinical cohorts
The study was conducted in accordance with the Declar-
ation of Helsinki and tumor biopsies from 73 primary
DLBCL patients were collected at time of diagnosis in
accordance with the RetroGen research protocol, ap-
proved by the Health Ethic Committee of North
Denmark Region (Approval jr. no. N-20140099). All pa-
tients were treated with R-CHOP according to standard
protocols. This retrospective cohort is referred to as the
AAU dataset. In addition, we used the following data
sets from the National Center for Biotechnology Infor-
mation Gene Expression Omnibus (GEO) repository:
Lymphoma/Leukemia Molecular Profiling Project R-
CHOP (LLMPP R-CHOP) (GSE10846) [19] and Inter-
national DLBCL Rituximab-CHOP Consortium MD An-
derson Project (IDRC) (GSE31312) [20]. All patients
were classified into the molecular ABC/GCB subclasses
using GEP (Table 2).

Dose-response experiments
Dose-response screens with rituximab, cyclophospha-
mide, doxorubicin, and vincristine, respectively, were
performed as described previously [18, 21]. Since cyclo-
phosphamide is a prodrug that requires hepatic activa-
tion to produce its active metabolite, the synthetic
oxazaphophorine derivate mafosfamide was used in the
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dose-response assays. As the pharmacological effect of
R-CHOP has limited cross-resistance rather than syner-
gism [8], single drug screens were used instead of com-
binations in order to identify miRNAs that were
specifically associated to response for the individual
components of the treatment regimen. The cells were
seeded 24 h prior to addition of the drug using cell line
specific seeding concentrations to ensure exponential
growth for 48 h (Table 1). For rituximab dose-response
screens, each cell line was subjected to 16 concentra-
tions in serial 2-fold dilutions ranging from 133.3 μg/mL
to 407 × 10−5μg/mL and 30min after rituximab addition,
normal pooled human AB serum (INR IPLA-SERAB,
Novakemi AB, Sweden) was added to a final concentra-
tion of 20%. For cyclophosphamide, doxorubicin, and
vincristine, the cell lines were exposed to 18 drug-
specific concentrations in 2-fold dilutions starting from
80, 10, and 20 μg/mL, respectively [21]. The number of
metabolic active cells was evaluated after 48 h of drug
exposure using MTS assay (CellTiter 96 Aqueous One
Solution Reagent, Promega, Madison, WI). Absorbance
was measured at 492 nm using an Optima Fluorostar
plate reader (BMG LAB-TECH, Ortenberg, Germany).
All border wells were omitted from data analysis in
order to avoid border effect. All drug screens were con-
ducted with 3 replicates of each drug dose and with 3
biological replicates for each cell line. Since a fixed time
of drug exposure were used, fast proliferating cells will

appear more sensitive compared to slow proliferating
ones. Therefore, area under the dose-response curve
were used as summary statistic of the drug screens, mak-
ing the results independent of cell line doubling time as
it takes growth kinetic into account [21].

Global miRNA and mRNA expression profiling
Total RNA was extracted using a modified protocol
combining TRIzol Reagent (Invitrogen, Paisley, UK) and
mirVana miRNA Isolation Kit (Ambion/ThermoFisher
Scientific, Grand Island, NY) as previously described
[22]. RNA quality and concentration was determined by
Agilent 2100 Bioanalyzer analysis (Agilent Technologies,
Santa Clara, CA) and NanoDrop ND-1000 spectropho-
tometer (ThermoFisher Scientific), respectively. miRNA
expression profiling was performed using GeneChip
miRNA 1.0.2 arrays (Affymetrix, Santa Clara, CA) ac-
cording to the manufacturer’s protocol. The cell lines
DB, FARAGE, OCI-Ly3, OCI-Ly7, OCI-Ly8, OCI-Ly19,
NU-DHL-1, RIVA, and U2932 were prepared for
hybridization using Flashtag HSR kit from Genesphere
(Genesphere, Hatfield, PA) whereas HBL-1, MC-116,
NU-DUL-1, SU-DHL-4, SU-DHL-5, and SU-DHL-8
were prepared using Fashtag Biotin HSR RNA labeling
kit (Affymetrix) [14]. For GEP, RNA was labeled and hy-
bridized to Affymetrix GeneChip Human Genome U133
(HG-U133) Plus 2.0 arrays, as described by the manufac-
turer. Generated miRNA and HG-U133 CEL files are

Table 1 Cell line specifications

Cell line Seeding concentration Rituximab Cyclophosphamide Doxorubicin Vincristine ABC/GCB

cells/mL AUC AUC AUC AUC

DB 0.125 × 106 318.1 Int 345.6 Res 275.5 Res 130.7 Res GCB

FARAGE 0.25 × 106 344.1 Int 311.0 Res 179.6 Sen 56.1 Sen GCB

HBL-1 0.25 × 106 421.9 Res 226.0 Int 272.2 Int 84.5 Int ABC

MC-116 0.25 × 106 NA NA NA NA 271.8 Int 62.0 NA* GCB

NU-DHL-1 0.125 × 106 316.6 Int 171.7 Sen 200.6 Sen NA NA ABC

NU-DUL-1 0.25 × 106 236.4 Sen 214.1 Sen 223.9 Int 90.3 Int UC

OCI-Ly3 0.125 × 106 407.6 Res 261.7 Int 253.4 Int 74.8 Int ABC

OCI-Ly7 0.125 × 106 218.3 Res 257.9 Sen 324.9 Res 114.5 Int GCB

OCI-Ly8 0.25 × 106 406.6 Res NA NA NA NA NA NA UC

OCI-Ly19 0.25 × 106 400.4 Res 202.1 Sen 166.9 Sen 54.0 Sen UC

RIVA 0.25 × 106 275.8 Res 296.0 Int 326.7 Res 109.0 Res ABC

SU-DHL-4 0.25 × 106 150.4 Sen NA NA 288.8 Res NA NA GCB

SU-DHL-5 0.25 × 106 251.2 Sen 164.5 Sen 201.5 Sen 57.9 Sen GCB

SU-DHL-8 0.5 × 106 425.0 Res 270.6 Int 222.0 Sen 126.1 Res GCB

U2932 0.4 × 106 354.1 Int 329.8 Res 294.8 Res 85.3 Int GCB

For each drug, DLBCL cell lines were ranked according to sensitivity based on area under the dose-response curve (AUC) for rituximab, cyclophosphamide,
doxorubicin, and vincristine. Division into tertiles defines: Rituximab, 4 sensitive, 5 intermediate, 5 resistant; Cyclophosphamide, 4 sensitive, 4 intermediate, 4
resistant; Doxorubicin, 5 sensitive, 4 intermediate, 5 resistant; Vincristine, 4 sensitive, 4 intermediate, 4 resistant. Based on GEP, DLBCL cell lines were classified into
ABC/GCB subclasses by Wright classification using published algorithms at hemaClass.org [17]. ABC, activated B-cell like; GCB, germinal center B-cell like; Int,
intermediate; NA, not available; Res, resistant; Sen, sensitive; * excluded due to large variation between replicates
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deposited at NCBI GEO repository GSE72648 and
GSE109027, respectively. The data comply with MIAME
requirements [23].

Experimental validation of miRNA expression in cell lines
by digital droplet polymerase chain reaction
Two independent cDNA syntheses were conducted
and pooled before amplification in digital droplet
polymerase chain reaction (ddPCR) analysis. Each
sample was analyzed in duplicate/triplicate using
ddPCR assays and correlated to probes on U133 + 2;
hsa-miR-146a (000468), hsa-miR-155 (002623), hsa-
miR-21 (000397), hsa-miR-27a (000408) and hsa-miR-
34a (000426). miRNA expression was normalized to
RNU6B (001093) and RNU24 (001001) and log2
transformed prior to correlation to miRNA specific
probes on U133 + 2 (232504_at for miR-146a, 22937_
at for miR-155, 220990_s_at for miR-21, 1555847_a_
at for miR-23a –miR-27a-miR-24-2, and 235571_at
for miR-34a). Correlation coefficients shown in Sup-
plementary Figure 5.

Statistical analysis
All statistical analyses were performed with R version
3.5.1; an accompanying knitR document with detailed
information on the analysis and package versions is sup-
plied in Supplementary Document S2. Prior to statistical
analysis, the array data were cohort-wise background
corrected and normalized at probe level by robust multi-
chip average (RMA) [24] implemented in the Biocon-
ductor package affy v1.58 [25].
Differentially expressed miRNAs between DLBCL cells

lines classified as sensitive and resistant for rituximab,
cyclophosphamide, doxorubicin, and vincristine, respect-
ively, were identified using the empirical Bayes method
[26] implemented in the R package limma v3.36.3 [27].
Since cell lines were prepared for hybridization to the
miRNA 1.0.2 microarray platform with different labeling
kits [14], differential miRNA expression analyses were
adjusted for possible confounding with a kit effect by in-
cluding it as a covariate in the model. MiRNAs with ab-
solute log-fold changes greater than two (|FC| > 2) were
considered as differentially expressed and were included
in the list of candidate miRNAs subjected for further
analysis. The set of candidate miRNAs for development
of the prognostic classifier was chosen by filtering the
set of differentially expressed miRNAs against those de-
tected by HG-U133 probe sets. For each candidate probe
set, correlation analysis between miRNA 1.0.2 array and
HG-U133 array was conducted to validate HG-U133
array-based miRNA expression assessment.
Three clinical data sets (Table 2) were combined

into a meta-cohort for training and validation of the
prognostic classifiers. Validation was performed by

repeated cross-validation with 10 folds and 10 repeats
rather than using an independent validation set, since
only two large clinical cohorts were available and we
wanted to investigate the potential of a model trained
on a combined dataset. By repeating the cross-
validation we were able to investigate the variation in
prediction accuracy resulting from the randomization
in the cross-validation folds.
To compensate for cohort-wise technical batch effects,

the ComBat function implemented in the R-package sva
[28] was applied. Training of prognostic classifiers were
performed for all DLBCL patients and for subsets of
ABC and GCB classified patients, respectively.
Progression-free survival (PFS) was chosen as the out-
come, since it is a treatment evaluation parameter as
closely as possible to the time of drug exposure and the
tested miRNAs were all associated directly to drug spe-
cific response. Furthermore, overall survival (OS) was
used for verification of findings.
The prognostic miRNA-panel models were identified

and trained by both multivariate Cox regression or ran-
dom survival forest with 1000 trees using either drug-
specific probes alone or in combination with a dichoto-
mized IPI score (IPI “0–1” and “2–5” for low and high
risk, respectively). The random survival forest imple-
mentation from the R-package randomForestSRC v2.7.0
was used [29–31]. For Cox regression models, variable
selection was performed by preselecting probes that had
a statistically significant effect in univariate Cox regres-
sions adjusted for study effects (p < 0.05). The preselec-
tion of probes was performed for each cross-validation

Table 2 Patient characteristics

IDRC LLMPP R-CHOP AAU

n 468 233 73

Gender

Female 198 (42%) 99 (42%) 30 (41%)

Male 270 (58%) 134 (58%) 43 (59%)

Age

Median 63 61 66

Range 18–92 17–92 20–87

IPI

0–1 254 (54%) 94 (40%) 48 (66%)

2–5 168 (36%) 70 (30%) 21 (29%)

NA 46 (10%) 69 (30%) 4 (5%)

ABC / GCB

ABC 199 (43%) 93 (40%) 32 (44%)

GCB 225 (48%) 107 (46%) 32 (44%)

UC 44 (9%) 33 (14%) 9 (12%)

Number of patients and percentage within cohort / variable. ABC activated B-
cell-like, GCB germinal center B-cell-like, IPI International prognostic index, NA
not available, n number of patients, UC unclassified
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fold and repetition to avoid sharing information between
training and validation sets. Additionally, univariate Cox
regression models using either IPI or age as input fea-
tures were trained and used as a baseline comparison for
the models including miRNA probes. The prognostic ac-
curacies of the classifiers were validated by performing
10-fold cross-validation using either all DLBCL patients
in the combined dataset, or the respective subsets of
ABC or GCB classified patients. The models were
ranked by the Brier score and time varying area under
the ROC curves by comparing the predicted survival
probability for each individual in the combined valid-
ation set from the cross-validations to the observed PFS
and OS every half year from zero to five years.
The linear predictions from the Cox models in the

cross-validation were used to get a score for each in-
dividual, by averaging across the scores from the 10
repeats of the cross-validation. By splitting these
scores into tertiles Kaplan-Meier plots for low, inter-
mediate, and high risk patients were generated within
the respective cohorts and with significance evaluated
by log-rank tests. Since more than 90% of events for
both PFS and OS happened within the first 5 years
Kaplan-Meier plots were restricted to this period. For
all Kaplan-Meier analyses, significance threshold were
set to 0.05.

Results
Identification of miRNAs associated with drug-specific
response
Triplicate dose-response experiments were analyzed
using area under the dose-response curve for rituximab,
cyclophosphamide, doxorubicin, and vincristine, respect-
ively, taking the individual cell line doubling time into
account [21]. For each drug, the cell lines were ranked ac-
cording to their sensitivity, grouped into tertiles and catego-
rized as sensitive, intermediate responsive, or resistant
(Table 1). Global miRNA expression screens were con-
ducted on untreated cell lines for optimal candidate selec-
tion and subsequent differential miRNA expression analysis
between sensitive and resistant cell lines identified 43 miR-
NAs to be associated with compounds of the R-CHOP regi-
men (Supplementary Tables 1, 2, 3, and 4). The majority of
miRNAs associated with vincristine and doxorubicin were
downregulated in resistant DLBCL cells, whereas rituximab
resistance was primarily associated with upregulated miR-
NAs (Supplementary Tables 1, 3, and 4). Conversely,
differentially expressed miRNAs for cyclophosphamide
were equally distributed between up- and downregulation
(Supplementary Table 2). Several miRNAs were associated
with more than one drug (Fig. 1); of notice, 6 out of 13
miRNAs were shared between vincristine and doxorubicin.
Additionally, miR-146a, miR-148a, miR-155, miR-221, and

Fig. 1 Drug response-specific miRNAs and HG-U133 probes. Venn-diagram depicting response specific differentially expressed miRNAs for
rituximab, cyclophosphamide, doxorubicin, and vincristine. Numbers in parentheses show the number of matching HG-U133 Plus 2.0 probes.
Figure was constructed using the R package VennDiagram v1.6.20
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miR-222 displayed ambiguous association to responses of
different compounds of the regimen.
Since the miRNA microarray platform is not used in

clinical context, miRNAs were matched to HG-U133
microarray probe sets detecting miRNA encoding genes,
which reduced the candidate list to 11 probe sets detect-
ing the following 9 miRNAs: miR-146a, miR-155, miR-
21, miR-23a~27a~ 24–2 cluster, miR-34a, miR-503, and
let-7b, which cover drug specific miRNAs for all four
drugs (Fig. 1, Table 3).

miRNA-panel prognostic classifier
Based on the identified drug-specific miRNAs, multiple
Cox regression and random survival forest models were
used to build classifiers predicting disease progression in
patients with DLBCL to test both parametric and non-
parametric ensemble based survival models. Since ABC
and GCB-classified patients display different miRNA ex-
pression patterns, pathogenesis and clinical outcome [2,
3, 11], the training and validation of prognostic models
were conducted for all DLBCL patients and for ABC and
GCB classified patients, respectively. Additionally, since
IPI is well-established in the clinical setting, it was essen-
tial to evaluate if the prognostic miRNA classifiers added
to the prognostic performance of IPI.
Prognostic accuracies of the generated miRNA-panel

classifiers were assessed by Brier scores, which revealed
better performance of the multivariate Cox models com-
pared to the random survival forest models that had the
largest prediction error regardless of input features
(Fig. 2a-c). In contrast, evaluations of predictive perfor-
mances by time varying area under the ROC curves were
not as unambiguous, however, the highest predictive

accuracy was still observed for multivariate Cox models
(Fig. 2d-e). Comparison of analyses conducted for the
respective cohorts (All DLBCL, ABC, and GCB patients)
showed the lowest prediction errors for all models
within the GCB subclass (Fig. 2a-c), with a multivariate
Cox miRNA-panel model displaying prognostic utility
comparable to IPI (Fig. 2f). In addition, combination of
the miRNA-panel and IPI substantially increased prog-
nostic performance in GCB classified patients (Fig. 2f),
indicating a prognostic signal from the response-specific
miRNAs independent of IPI. Furthermore, the Cox
model combining IPI and the miRNA probe sets within
the GCB subclass had the highest prognostic utility for
all cross-validation repetitions showing a robust
improvement.
In the ABC subclass, the developed miRNA-panel classi-

fier did not provide additional prognostic information to
IPI, either alone or in combination with IPI (Fig. 2b and
e), suggesting little utility of the drug-specific miRNAs in
this subclass. In agreement, similar results for ABC and
GCB classified patients were observed when comparing
the predicted PFS to the observed OS (Supplementary Fig-
ure 1). Consequently, the analyses were focused on the
GCB subclass of DLBCL, which accounts for 46% of all
cases (Table 2).
A linear prediction score was obtained for each indi-

vidual in the combined GCB dataset by averaging the
scores from the validation sets across the 10 repetitions
of cross-validation for the multivariate Cox models using
miRNA probe sets alone or in combination with IPI.
These scores were used to rank the individual risk for all
GCB classified patients, and by splitting the scores into
tertiles, all GCB DLBCL patients were classified in

Table 3 Candidate miRNAs

Probe ID (HG-U133) miRNA Drug sensitivity Annotation grade

232504_at miR-146a ↓ Cyc, ↑ Vin A

238225_at miR-146a ↓ Cyc, ↑ Vin B

229437_at miR-155 ↓ Rtx, ↑ Dox, ↑Vin A

220990_s_at miR-21 ↑ Vin A

229417_at miR-21 ↑ Vin E

235317_at miR-23a~miR-27a~miR-24-2 ↑ Dox, ↑ Vin B

1555847_a_at miR-23a~miR-27a~miR-24-2 ↑ Dox, ↑ Vin A

235571_at miR-34a ↑ Dox, ↑ Vin A

1557342_a_at let-7b ↑ Vin A

241464_s_at let-7b ↑ Vin B

227488_at miR-503 ↓ Rtx B

Differentially expressed miRNAs detected by HG-U133 Plus 2.0 probes were selected as candidate miRNAs. The list consisted of 11 probe sets detecting 9 miRNAs.
The annotation grade was assessed by NetAffx (Affymetrix) a transcript assignment pipeline creating a relationship between GeneChip probe sets and current
transcript record. The transcript assignment grades fall into five categories A-E that describe the quality of the direct evidence. Grade A is a matching probe set
having nine or more probes matching transcript mRNA. Grade B transcript assignments have partial overlap between transcripts and target sequence. Grade E is
given when no transcript is found. Abbreviations: ↑ and ↓ defines up- and downregulation, respectively, in drug sensitive cell lines. Cyc, cyclophosphamide; Dox,
doxorubicin; Rtx, rituximab; Vin, vincristine
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defined groups of low, intermediate, and high-risk, the
latter with significantly inferior prognosis as shown in
the Kaplan-Meier plots for PFS and OS (Fig. 3, Supple-
mentary Figure 2). The low and intermediate-risk group
are not very distinct for the model including only
miRNA probe sets, addition of IPI, however, clearly
separates the patients into the distinct risk groups.
The prognostic potential of the miRNA-panel was
tested in each individual dataset validating the find-
ings of inferior survival of patients with high-risk
score (Supplementary Figure 3a-d).
In accordance, GCB DLBCL patients with stable or

progressive disease at time of response evaluation [32]
display higher risk scores (Fig. 4), with the biggest differ-
ence in mean risk scores for the model including IPI. In
addition, the multivariate Cox regression model combin-
ing IPI and probe sets detecting drug-specific miRNAs
(miR-146a, miR-155, miR-21, miR-34a, and the miR-

23a~miR-27a~miR-24-2 cluster) displayed the strongest
prognostic performance (Fig. 2c and f) and was selected
as the best model. Selected features and coefficients of
the developed prognostic classifier are presented in
Table 4, showing that most of the prognostic signal is
carried by IPI, and that some of the probes have insig-
nificant signal, although they were significant in the uni-
variate analysis (Supplementary Table 5). Six of the
candidate probe sets were not included in the final
model, as they did not display significant effect in uni-
variate Cox regression analysis (Supplementary Table 5).
Expression levels of the probe sets included in the

final prognostic model (Table 4) were highly corre-
lated to the mature miRNA measured by miRNA
array (Supplementary Figure 4), supporting HG-U133
array-based miRNA expression assessment. Of notice,
expression of the six miRNAs without significant ef-
fect were not correlated to the mature miRNA

Fig. 2 Evaluation of prognostic accuracy. Predicted survival from various prognostic classifiers vs observed progression free survival with the Brier
score (top row, a-c) or tAUC (bottom row, d-f). Figures display means + − 2SD evaluated across the 10 cross-validation repetitions. The prognostic
classifiers include: multivariate Cox regression models using either age (CoxAge), IPI (CoxIPI), miRNA expression (CoxMIR), or miRNA expression
combined with IPI score (CoxMIRIPI), and random survival forest models using miRNA expression (RSFMIR) or miRNA expression in combination
with IPI (RSFMIRIPI). Time in years. Figure was constructed using the R packages ggplot2 v3.2.1 and gridExtra v2.3. ABC, activated B-cell-like; GCB,
germinal center B-cell-like; IPI, international prognostic index; MIR, microRNA panel; PFS, progression-free survival; RSF, random survival forest;
tAUC, time-varying are under the ROC curve
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Fig. 3 Predicted risk group vs 5-year progression free survival in the combined GCB dataset. Risk groups were obtained by taking the
average predicted risk score across validation folds for the repeated cross-validation for the multivariate Cox models using (a) miRNA
probes either alone or (b) in combination with IPI and splitting these into tertiles. Figure was constructed using the R package
survminer v0.4.6

Fig. 4 Risk scores in Cheson response evaluation classes. Response evaluations of GCB classified patients were investigated for association to
predicted risk scores. CR, complete remission; PD, progressive disease; PR, partial response; SD, stable disease. Risk scores were obtained by taking
the average predicted risk score across validation folds for the repeated cross-validation for the multivariate Cox models using miRNA probes
either alone or in combination with IPI. Figure was constructed using the R packages ggplot2 v3.2.1 and gridExtra v2.3
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(Supplementary Figure 4), most likely due to low
probe set specificity (Annotation Grade B and E,
Table 3). For all drug-specific miRNAs a hazard ratio
below 1 is observed (Table 4), indicating that higher
expression is associated with better prognosis corre-
sponding to the original observation of down-
regulation being associated to resistance in vitro
(Table 3). Additionally, it is evident that vincristine
and doxorubicin are the main contributors to the
prognostic miRNA signature as most of the miRNAs
in the final classifier were initially included due to
significant effect on doxorubicin and vincristine
resistance.

Discussion
Here, we combined global miRNA expression profiles
and systematic dose-response screens to identify miR-
NAs associated to growth responses towards single drug
components of the R-CHOP regimen. MiRNA-panel
classifiers that assign individual DLBCL patients into
low- and high-risk patients were generated utilizing two
different approaches, multivariate Cox regression and
random survival forest.
Several of the identified drug-specific miRNAs dis-

played ambiguous association to compounds of the R-
CHOP regimen. Thus, high expression of miR-155 was
associated with sensitivity to both doxorubicin and vin-
cristine and with resistance to rituximab, most likely due
to different drug mechanisms of actions and affected tar-
get genes. Noteworthy, doxorubicin and vincristine had
46% of the response specific miRNAs in common (miR-
23a~miR-27a~miR-24, miR-34a, miR-155, and miR-
222), indicating resistance mechanisms affecting the
same molecular pathways. Consistently, ectopic induc-
tion of miR-34a have been shown to sensitize Ewing’s
sarcoma cells to doxorubicin and vincristine [33].
Anti-tumor drugs often have several mechanisms of

actions. Cyclophosphamide has, beside the function as
an alkylating agent, been shown to induce cytokine re-
lease from the cancer cells, thereby attracting macro-
phages and facilitating antibody-mediated elimination

[34]. Our in vitro drug screen system lacks stromal cells
and the tumor microenvironment, thus, it is important
to emphasize that the identified cyclophosphamide-
specific miRNAs is restricted to the DNA crosslinking
mechanism of action. Furthermore, prednisone is a syn-
thetic corticosteroid drug suppressing the immune sys-
tem without cytotoxic effects and consequently, not
included in this study. The majority of the miRNAs in-
cluded in the final prognostic miRNA signature are asso-
ciated with doxorubicin and vincristine, which
consistently, are the two major cornerstones for efficacy
of R-CHOP [35].
Evaluation of prognostic impact in this study is based

on retrospective clinical cohorts where treatment condi-
tions are not strictly unified regarding number of cycles,
dosing [19, 20] and individual dose reductions due to
side-effects like neuropathy [36]. Taking this and the
pharmacological information on no synergistic effect of
R-CHOP into account [8], single drug screens were used
rather than combinational assays to identify candidate
miRNAs to be assessed in non-weighted models using
either multivariate Cox regression or random survival
forest models. The candidate miRNA originating from
single drug screens are thus tested and evaluated for
prognostic impacts in DLBCL patients receiving the full
R-CHOP regimen, ensuring that only miRNAs with
enough statistical power alone in univariate Cox-
regression analysis and in modelled combinations are in-
cluded in the final miRNA signature/panel.
The gene expression-based ABC/GCB subclasses of

DLBCL rely on distinct oncogenic mechanisms [37, 38]
and since affected miRNA targets vary depending upon
the cell type and differentiation stage in which the
miRNA is expressed [39], prognostic classifiers were
generated separately in ABC and GCB subclasses. The
drug-response specific miRNA-panel demonstrated a
significant prognostic association with PFS and OS in
GCB classified DLBCL patients treated with R-CHOP.
Consistently, the complete response rate after R-CHOP
was significantly higher for low-risk patients than high-
risk, documenting association between miRNA expres-
sion and response to R-CHOP.
Of the seven miRNAs significant in univariate Cox re-

gression, expression levels of miR-21, miR-146a, and
miR-155 have been confirmed to differentiate the ABC/
GCB subclasses in ≥4 studies [11, 12, 40–46], emphasiz-
ing the molecular heterogeneity between the two mo-
lecular subclasses of DLBCL. This difference in
expression levels as well as the cell type specific effect of
a particular miRNA, could be the reason why only little
prognostic utility of the miRNA-panel was observed for
ABC classified patients in contrast to GCB patients.
Additionally, IPI displayed lower prognostic accuracy in
these patients compared to GCB classified patients,

Table 4 Selected features and corresponding coefficients for
the final multivariate Cox model

Feature miRNA Hazard Ratio

IPI2–5 3.335

232504_at miR-146a 0.857

229437_at miR-155 0.868

220990_s_at miR-21 0.995

1555847_a_at miR-23a~miR-27a~miR-24-2 0.958

235571_at miR-34a 0.776

The model was trained within the GCB subset of patients. MiRNA probes were
pre-filtered to only include those significant in univariate Cox regression
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indicating that new prognostic tools for ABC-DLBCL
are needed.
The prognostic gold standard IPI is based solely on

clinical parameters [4] and does not provide insight into
the molecular pathways driving tumorigenesis and treat-
ment resistance. Thus, molecular markers could poten-
tially improve the prognostic accuracy of IPI and
simultaneously provide information about the under-
lying molecular mechanisms. In line, combination of IPI
with drug-specific miRNAs increased the prognostic ac-
curacy in GCB-DLBCL. miRNAs display potential as a
promising source of biomarkers as they, due to their
small size, are relatively resistant to RNase degradation
and are well-preserved in FFPE tissue [47]. Additionally,
miRNAs can be detected in plasma and serum, thus,
holding potential as liquid biomarkers [45, 48]. However,
this study is proof of concept that addition of single
drug-specific miRNAs to IPI improves prognostic
stratification.
The prognostic utility of the miRNA probe sets was

tested by training models using both the widely used
semi-parametric multivariate Cox model, and the
non-parametric ensemble based random survival for-
est. The Cox models relies on an assumption of
proportional hazards and has a straightforward inter-
pretation of parameters, whereas the random forest
model makes no such assumptions and is able to fit
more complex interactions among variables in the
training data, but is more difficult to interpret. How-
ever, in our data we found no benefit of the random
survival model compared to the Cox model. This
might be caused by the limited number of variables
which means that the individual survival trees are of
limited depth, leading to too much bias in the predic-
tions. Experimental validation of miRNA expression
levels in cell lines are performed by ddPCR prior to
correlation to miRNA specific probes on U133 + 2
(Supplementary Figure 4) generating coefficients of
correlations ranging between 0.65 and 0.94 (Supple-
mentary document S2, Table 5) supporting the usabil-
ity of miRNAs in prognostic models with IPI.
A possible drawback of the current study is the lack of

an independent external validation set, since the predic-
tion accuracies from the cross-validation might be overes-
timated. The focus of the current study is, however, not
the absolute but the relative prediction accuracy and thus
ranking of different models. The ranking of the models
could be affected by the randomization into cross-
validation folds, results however showed that the multi-
variate cox model including both miRNA probe sets and
IPI had superior prognostic signal within the GCB sub-
group, regardless of cross-validation randomization,
strengthening the hypothesis that miRNAs carry inde-
pendent prognostic signal from IPI. However, further

studies including an external validation set are needed be-
fore making recommendations on clinical application.
The miRNAs included in the final model are well

studied miRNAs with known functions in normal B-cell
differentiation and tumorigenesis [13, 49, 50]. miR-21
and miR-155 has been reported to be upregulated and to
possess oncogenic properties in numerous cancers in-
cluding breast cancer, glioblastoma, and DLBCL [51–
55]. In addition, they have shown specific importance in
the pathogenesis of DLBCL, highlighted by the fact that
transgenic mice overexpressing miR-21 or miR-155
spontaneously develop lymphoma [56, 57]. In line, high
expression of miR-21 is associated with inferior progno-
sis in DLBCL patients [55], and functional studies docu-
ment a direct link between high miR-21 expression and
CHOP resistance through regulation of PTEN [58]. miR-
155 has been shown to control vincristine sensitivity in
DLBCL cells through downregulation of Wee1 and clin-
ical outcome analysis documented a significantly pro-
longed survival of GCB-classified DLBCL patient with
high miR-155 expression [16].

Conclusions
In conclusion, we found as proof of concept that adding
gene expression data detecting drug-specific miRNAs to
the clinically established IPI improved the prognostic
stratification of GCB-DLBCL patients treated with R-
CHOP.
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