12 research outputs found

    Multifunctional light beam control device by stimuli-responsive liquid crystal micro-grating structures

    Get PDF
    There is an increasing need to control light phase with tailored precision via simple means in both fundamental science and industry. One of the best candidates to achieve this goal are electro-optical materials. In this work, a novel technique to modulate the spatial phase profile of a propagating light beam by means of liquid crystals (LC), electro-optically addressed by indium-tin oxide (ITO) grating microstructures, is proposed and experimentally demonstrated. A planar LC cell is assembled between two perpendicularly placed ITO gratings based on microstructured electrodes. By properly selecting only four voltage sources, we modulate the LC-induced phase profile such that non-diffractive Bessel beams, laser stretching, beam steering, and 2D tunable diffraction gratings are generated. In such a way, the proposed LC-tunable component performs as an all-in-one device with unprecedented characteristics and multiple functionalities. The operation voltages are very low and the aperture is large. Moreover, the device operates with a very simple voltage control scheme and it is lightweight and compact. Apart from the demonstrated functionalities, the proposed technique could open further venues of research in optical phase spatial modulation formats based on electro-optical materials.This work was supported by the Comunidad de Madrid and FEDER Program (S2018/NMT-4326), the Ministerio de Economía y Competitividad of Spain (TEC2016-77242-C3-1-R and TEC2016-76021-C2-2-R), the FEDER/Ministerio de Ciencia, Innovación y Universidades and Agencia Estatal de Investigación (RTC2017-6321-1, PID2019-109072RB-C31 and PID2019-107270RB-C21). The authors also acknowledge the support by the Ministry of National Defense of Poland (GBMON/13-995/2018/WAT), Military University of Technology (Grant no. 23-895)

    Ultrafast laser micro-nano structuring of transparent materials with high aspect ratio

    Full text link
    Ultrafast lasers are ideal tools to process transparent materials because they spatially confine the deposition of laser energy within the material's bulk via nonlinear photoionization processes. Nonlinear propagation and filamentation were initially regarded as deleterious effects. But in the last decade, they turned out to be benefits to control energy deposition over long distances. These effects create very high aspect ratio structures which have found a number of important applications, particularly for glass separation with non-ablative techniques. This chapter reviews the developments of in-volume ultrafast laser processing of transparent materials. We discuss the basic physics of the processes, characterization means, filamentation of Gaussian and Bessel beams and provide an overview of present applications

    Symmetric and asymmetric shocked gas jets for laser-plasma experiments

    No full text
    International audienceShocks in supersonic flows offer both high density and sharp density gradients that are used, for instance, for gradient injection in laser-plasma accelerators. We report on a parametric study of oblique shocks created by inserting a straight axisymmetric section at the end of a supersonic “de Laval” nozzle. The effect of different parameters, such as the throat diameter and straight section length on the shock position and density, is studied through computational fluid dynamics (CFD) simulations. Experimental characterizations of a shocked nozzle are compared to CFD simulations and found to be in good agreement. We then introduce a newly designed asymmetric shocked gas jet, where the straight section is only present on one lateral side of the nozzle, thus providing a gas profile well adapted for density transition injection. In this case, full-3D fluid simulations and experimental measurements are compared and show excellent agreement

    Demonstration of stable long-term operation of a kilohertz laser-plasma accelerator

    No full text
    International audienceWe report on the stable and continuous operation of a kilohertz laser-plasma accelerator. Electron bunches with 2.6 pC charge and 2.5 MeV peak energy were generated via injection and trapping in a downward plasma density ramp. This density transition was produced in a specially designed asymmetrically shocked gas jet. The reproducibility of the electron source was also assessed over a period of a week and found to be satisfactory with similar values of the beam charge and energy. Particle in cell simulations confirm the role of the shock and the density transition in the electron injection mechanism. These results show that the reproducibility and stability of the laser-plasma accelerator are greatly enhanced on the long-term scale when using a robust scheme for density gradient injection

    Optimization and stabilization of a kilohertz laser-plasma accelerator

    No full text
    Article No. 033105Laser-plasma acceleration at kilohertz repetition rates has recently been shown to work in two different regimes with pulse lengths of either 30 fs or 3.5 fs. We now report on a systematic study in which a large range of pulse durations and plasma densities were investigated through continuous tuning of the laser spectral bandwidth. Indeed, two laser-plasma accelerator (LPA) processes can be distinguished, where beams of the highest quality, with a charge of 5.4 pC and a spectrum peaked at 2-2.5MeV, are obtained with short pulses propagating at moderate plasma densities. Through particle-in-cell (PIC) simulations, the two different acceleration processes are thoroughly explained. Finally, we proceed to show the results of a 5-h continuous and stable run of our LPA accelerator accumulating more than 18 x 10 6 consecutive shots, with a charge of 2.6 pC and a peaked 2.5MeV spectrum. A parametric study of the influence of the laser driver energy through PIC simulations underlines that this unprecedented stability was obtained thanks to micro-scale density gradient injection. Together, these results represent an important step toward stable laser-plasma accelerated electron beams at kilohertz repetition ratesFizikos katedraFizinių ir technologijos mokslų centrasFizinių ir technologijos mokslų centras, VilniusVytauto Didžiojo universiteta

    Optimization and stabilization of a kilohertz laser-plasma accelerator

    No full text
    Laser–plasma acceleration at kilohertz repetition rates has recently been shown to work in two different regimes with pulse lengths of either 30 fs or 3.5 fs. We now report on a systematic study in which a large range of pulse durations and plasma densities were investigated through continuous tuning of the laser spectral bandwidth. Indeed, two laser–plasma accelerator (LPA) processes can be distinguished, where beams of the highest quality, with a charge of 5.4 pC and a spectrum peaked at 2–2.5 MeV, are obtained with short pulses propagating at moderate plasma densities. Through particle-in-cell (PIC) simulations, the two different acceleration processes are thoroughly explained. Finally, we proceed to show the results of a 5-h continuous and stable run of our LPA accelerator accumulating more than 18 ???? 106 consecutive shots, with a charge of 2.6 pC and a peaked 2.5 MeV spectrum. A parametric study of the influence of the laser driver energy through PIC simula- tions underlines that this unprecedented stability was obtained thanks to micro-scale density gradient injection. Together, these results repre- sent an important step toward stable laser–plasma accelerated electron beams at kilohertz repetition rates
    corecore