17 research outputs found

    Severe course of Lyme neuroborreliosis in an HIV-1 positive patient; case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lyme Neuroborreliosis (LNB) in a human immunodeficiency virus (HIV) positive patient is a rare co-infection and has only been reported four times in literature. No case of an HIV patient with a meningoencephalitis due to LNB in combination with HIV has been described to date.</p> <p>Case presentation</p> <p>A 51 year old woman previously diagnosed with HIV presented with an atypical and severe LNB. Diagnosis was made evident by several microbiological techniques. Biochemical and microbiological recovery during treatment was rapid, however after treatment the patient suffered from severe and persistent sequelae.</p> <p>Conclusions</p> <p>A clinician should consider LNB when being confronted with an HIV patient with focal encephalitis, without any history of Lyme disease or tick bites, in an endemic area. Rapid diagnosis and treatment is necessary in order to minimize severe sequelae.</p

    Estimating the burden of disease attributable to four selected environmental risk factors in South Africa

    Get PDF
    The first South African National Burden of Disease study quantified the underlying causes of premature mortality and morbidity experienced in South Africa in the year 2000. This was followed by a Comparative Risk Assessment to estimate the contributions of 17 selected risk factors to burden of disease in South Africa. This paper describes the health impact of exposure to four selected environmental risk factors: unsafe water, sanitation and hygiene; indoor air pollution from household use of solid fuels; urban outdoor air pollution and lead exposure.The study followed World Health Organization comparative risk assessment methodology. Population-attributable fractions were calculated and applied to revised burden of disease estimates (deaths and disability adjusted life years, [DALYs]) from the South African Burden of Disease study to obtain the attributable burden for each selected risk factor. The burden attributable to the joint effect of the four environmental risk factors was also estimated taking into account competing risks and common pathways. Monte Carlo simulation-modeling techniques were used to quantify sampling, uncertainty.Almost 24 000 deaths were attributable to the joint effect of these four environmental risk factors, accounting for 4.6% (95% uncertainty interval 3.8-5.3%) of all deaths in South Africa in 2000. Overall the burden due to these environmental risks was equivalent to 3.7% (95% uncertainty interval 3.4-4.0%) of the total disease burden for South Africa, with unsafe water sanitation and hygiene the main contributor to joint burden. The joint attributable burden was especially high in children under 5 years of age, accounting for 10.8% of total deaths in this age group and 9.7% of burden of disease.This study highlights the public health impact of exposure to environmental risks and the significant burden of preventable disease attributable to exposure to these four major environmental risk factors in South Africa. Evidence-based policies and programs must be developed and implemented to address these risk factors at individual, household, and community levels

    Sexual Dimorphism of Staminate- and Pistillate-Phase Flowers of Saponaria officinalis (Bouncing Bet) Affects Pollinator Behavior and Seed Set

    Get PDF
    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual dimorphism in plants without the confounding effects of genetic differences between separate male and female individuals

    Efficient Lewis Acid Promoted Alkene Hydrogenations Using Dinitrosyl Rhenium(−I) Hydride Catalysts

    Full text link
    Highly efficient alkene hydrogenations were developed using NO-functionalized hydrido dinitrosyl rhenium catalysts of the type [ReH(PR3)2(NO)(NO(LA))][Z] (2, LA = B(C6F5)3; 3, LA = [Et]+, Z = [B(C6F5)4]−; 4, LA = [SiEt3]+, Z = [HB(C6F5)3]−; R = iPr a, Cy b). Lewis acid attachment to the NO ligand was found to facilitate bending at the NOLA atom and concomitantly to open up a vacant site at the rhenium center. According to DFT calculations, the ability to bend follows the order 4 > 3 > 2, which did not match with the order of increasing hydrogenation activities: 3 > 4 > 2. The main factor spoiling catalytic performance was catalyst deactivation by detachment of the LA group occurring during the catalytic reaction course, which was found to go along with the decrease in order of DFT-calculated strengths of the ONO–LA bonds. LA detachment from the ONO atom could at least partly be prevented by LA addition as cocatalysts, which led to an extraordinary boost of the hydrogenation activities. For instance the “1/hydrosilane/B(C6F5)3” (1:5:5) system exhibited the highest performance, with TOFs up to 1.2 × 105 h–1 (1-hexene, 1-octene, cyclooctene, cyclohexene). The cocatalyst [Et3O][B(C6F5)4] showed the smallest effect, presumably due to the strong Lewis acidic character of the reagent causing side-reactions before reacting with 1a,b. The catalytic reaction course crucially involves not only reversible bending at the NOLA atom but also loss of a PR3 ligand, forming 16e or 14e monohydride reactive intermediates, which drive an Osborn-type hydrogenation cycle with olefin before H2 addition

    Highly efficient large bite angle diphosphine substituted molybdenum catalyst for hydrosilylation

    Full text link
    Treatment of the complex Mo(NO)Cl3(NCMe)2 with the large bite angle diphosphine, 2,2′-bis(diphenylphosphino)diphenylether (DPEphos) afforded the dinuclear species [Mo(NO)(P∩P)Cl2]2[μCl]2 (P∩P = DPEphos = (Ph2PC6H4)2O (1). 1 could be reduced in the presence of Zn and MeCN to the cationic complex [Mo(NO)(P∩P)(NCMe)3]+[Zn2Cl6]2–1/2 (2). In a metathetical reaction the [Zn2Cl6]2–1/2 counteranion was replaced with NaBArF4 (BArF4 = [B{3,5-(CF3)2C6H3}4]) to obtain the [BArF4]− salt [Mo(NO)(P∩P)(NCMe)3]+[BArF4]− (3). 3 was found to catalyze hydrosilylations of various para substituted benzaldehydes, cyclohexanecarboxaldehyde, 2-thiophenecarboxaldehyde, and 2-furfural at 120 °C. A screening of silanes revealed primary and secondary aromatic silanes to be most effective in the catalytic hydrosilylation with 3. Also ketones could be hydrosilylated at room temperature using 3 and PhMeSiH2. A maximum turnover frequency (TOF) of 3.2 × 104 h–1 at 120 °C and a TOF of 4400 h–1 was obtained at room temperature for the hydrosilylation of 4-methoxyacetophenone using PhMeSiH2 in the presence of 3. Kinetic studies revealed the reaction rate to be first order with respect to the catalyst and silane concentrations and zero order with respect to the substrate concentrations. A Hammett study for various para substituted acetophenones showed linear correlations with negative ρ values of −1.14 at 120 °C and −3.18 at room temperature
    corecore