84 research outputs found
Verbleib und Ökotoxizität von SiO2 und CeO2-Nanomaterialien im System Boden - Pflanze
Aufgrund des breiten Anwendungsspektrums von nSiO2 und nCeO2 sind Einträge dieser Nanomaterialien (NM) in den Boden über verschiedene Expositionspfade umweltrelevant hinsichtlich Verbleib und Ökotoxizität im System Boden - Pflanze. Im Rahmen des Projekts DENANA (Designkriterien für Nachhaltige Nanomaterialien, BMBF-FKZ: 03X0152) wurden diesbezüglich verschiedene, u.a. dotierte und funktionalisierte, NM nebst ionischen Referenzen und Bulkmaterialien getestet. Ergebnisse aus Kurz- und Langzeitversuchen mit höheren Pflanzen deuten darauf hin, dass nSiO2- bürtiges Silicium (Si) maßgeblich in gelöster Form von Pflanzen aufgenommen wird. Im Fall von Winterweizen (Triticum aestivum L.) wurde Si oberirdisch in Form sekundärer Neubildungen akkumuliert. Eine partikuläre Aufnahme konnte bislang weder für nSiO2 noch für nCeO2 nachgewiesen werden. Auch zeigten die getesteten Sorten keine erhöhte Akkumulation von Si oder Cerium (Ce) im Weizenkorn, sodass eine Gefährdung der Lebensmittelsicherheit durch Weizenmehlprodukte als gering einzustufen ist. Unterdessen deutete eine Steigerung des Phosphor (P)-Ernährungszustands der Pflanzen infolge Applikation von nSiO2 zum Substrat auf eine Verdrängung von P durch Si von Bindungsplätzen im Boden, mit potentiellen Implikationen für die Pflanzendüngung. Ökotoxikologische Wirkungen durch nSiO2 wurden in umweltrelevanten Konzentrationen weder auf höhere Pflanzen noch auf Ammonium oxidierende Bodenmikroorganismen beobachtet. Hinsichtlich nCeO2 wurde jedoch in einem Fall (NM-212 aus dem OECD Sponsorship Programm) nach Alterung in Böden eine reproduzierbare, signifikante Hemmung der Reproduktion des Kompostwurms Eisenia andrei sowie Fluchtverhalten induziert. Weiterhin konnte, trotz ausbleibender Hemmung der Biomasseproduktion, bei Weizenpflanzen mithilfe von in vivo Messungen zum Zustand des Photosystem II konzentrationsabhängig eine Stressreaktion auf nCeO2 festgestellt werden
The regional and global significance of nitrogen removal in lakes and reservoirs
Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 93 (2009): 143-157, doi:10.1007/s10533-008-9272-x.Human activities have greatly increased the transport of biologically available N through
watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and
reservoirs) have the potential to act as important sinks for this reactive N as it is
transported across the landscape because they offer ideal conditions for N burial in
sediments or permanent loss via denitrification. However, the patterns and controls on
lentic N removal have not been explored in great detail at large regional to global scales.
In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale,
global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and
Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been
included in previous global analyses, and also allows for separate treatment and analysis
of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems
are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N
yr-1 from watersheds globally. Small lakes (< 50 km2) were critical in the analysis,
retaining almost half (9.3 Tg N yr-1) of the global total. In model runs, capacity of lakes
and reservoirs to remove watershed N varied substantially (0-100%) both as a function of
climate and the density of lentic systems. Although reservoirs occupy just 6% of the
global lentic surface area, we estimate they retain approximately 33% of the total N
removed by lentic systems, due to a combination of higher drainage ratios (catchment
surface area : lake or reservoir surface area), higher apparent settling velocities for N, and
greater N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of
NiRReLa suggests that, on-average, N removal within lentic systems will respond more
strongly to changes in land use and N loading than to changes in climate at the global
scale.The NSF26 Research Coordination Network on denitrification for support for collaboration
(award number DEB0443439 to S.P. Seitzinger and E.A. Davidson). This project was
also supported by grants to J.A. Harrison from California Sea Grant (award number
RSF8) and from the U.S. Geological Survey 104b program and R. Maranger (FQRNT
Strategic Professor)
- …