685 research outputs found

    Multi-instanton and string loop corrections in toroidal orbifold models

    Full text link
    We analyze N=2 (perturbative and non-perturbative) corrections to the effective theory in type I orbifold models where a dual heterotic description is available. These corrections may play an important role in phenomenological scenarios. More precisely, we consider two particular compactifications: the Bianchi-Sagnotti-Gimon-Polchinski orbifold and a freely-acting Z_2 x Z_2 orbifold with N=1 supersymmetry and gauge group SO(q) x SO(32-q). By exploiting perturbative calculations of the physical gauge couplings on the heterotic side, we obtain multi-instanton and one-loop string corrections to the K\"ahler potential and the gauge kinetic function for these models. The non-perturbative corrections appear as sums over relevant Hecke operators, whereas the one-loop correction to the K\"ahler potential matches the expression proposed in [1,2]. We argue that these corrections are universal in a given class of models where target-space modular invariance (or a subgroup of it) holds.Comment: 37 pages, 3 figure

    On tadpoles and vacuum redefinitions in String Theory

    Full text link
    Tadpoles accompany, in one form or another, all attempts to realize supersymmetry breaking in String Theory, making the present constructions at best incomplete. Whereas these tadpoles are typically large, a closer look at the problem from a perturbative viewpoint has the potential of illuminating at least some of its qualitative features in String Theory. A possible scheme to this effect was proposed long ago by Fischler and Susskind, but incorporating background redefinitions in string amplitudes in a systematic fashion has long proved very difficult. In the first part of this paper, drawing from field theory examples, we thus begin to explore what one can learn by working perturbatively in a ``wrong'' vacuum. While unnatural in Field Theory, this procedure presents evident advantages in String Theory, whose definition in curved backgrounds is mostly beyond reach at the present time. At the field theory level, we also identify and characterize some special choices of vacua where tadpole resummations terminate after a few contributions. In the second part we present a notable example where vacuum redefinitions can be dealt with to some extent at the full string level, providing some evidence for a new link between IIB and 0B orientifolds. We finally show that NS-NS tadpoles do not manifest themselves to lowest order in certain classes of string constructions with broken supersymmetry and parallel branes, including brane-antibrane pairs and brane supersymmetry breaking models, that therefore have UV finite threshold corrections at one loop.Comment: 51 pages, LaTeX, 7 eps figures. Typos corrected, refs added. Final version to appear in Nucl. Phys. B. Thanks to W. Mueck for very interesting correspondence. v3 was accidentally in draft forma

    Type I vacua with brane supersymmetry breaking

    Full text link
    We show how chiral type I models whose tadpole conditions have no supersymmetric solution can be consistently defined introducing antibranes with non-supersymmetric world volumes. At tree level, the resulting stable non-BPS configurations correspond to tachyon-free spectra, where supersymmetry is broken at the string scale on some (anti)branes but is exact in the bulk, and can be further deformed by the addition of brane-antibrane pairs of the same type. As a result, a scalar potential is generated, that can stabilize some radii of the compact space. This setting has the novel virtue of linking supersymmetry breaking to the consistency requirements of an underlying fundamental theory.Comment: 45 pages. Late

    Non-tachyonic Scherk-Schwarz compactifications, cosmology and moduli stabilization

    Full text link
    It is well-known that Scherk-Schwarz compactifications in string theory have a tachyon in the closed string spectrum appearing for a critical value of a compact radius. The tachyon can be removed by an appropriate orientifold projection in type II strings, giving rise to tachyon-free compactifications. We present explicit examples of this type in various dimensions, including six and four-dimensional chiral examples, with softly broken supersymmetry in the closed sector and non-BPS configurations in the open sector. These vacua are interesting frameworks for studying various cosmological issues. We discuss four-dimensional cosmological solutions and moduli stabilization triggered by nonperturbative effects like gaugino condensation on D-branes and fluxes.Comment: 36 pages, LaTeX; added reference

    Partial breaking of supersymmetry, open strings and M-theory

    Get PDF
    We study total and partial supersymmetry breaking by freely acting orbifolds, or equivalently by Scherk-Schwarz compactifications, in type I string theory. In particular, we describe a four-dimensional chiral compactification with spontaneously broken N=1 supersymmetry, some models with partial N=4→N=2N=4\to N=2 and N=4→N=1N=4\to N=1 supersymmetry breaking and their heterotic and M-theory duals. A generic feature of these models is that in the gravitational sector and in the spectrum of D-branes parallel to the breaking coordinate, all mass splittings are proportional to the compactification scale, while global (extended) supersymmetry remains unbroken at tree level for the massless excitations of D-branes transverse to the breaking direction.We study total and partial supersymmetry breaking by freely acting orbifolds, or equivalently by Scherk-Schwarz compactifications, in type I string theory. In particular, we describe a four-dimensional chiral compactification with spontaneously broken N=1 supersymmetry, some models with partial N=4→N=2N=4\to N=2 and N=4→N=1N=4\to N=1 supersymmetry breaking and their heterotic and M-theory duals. A generic feature of these models is that in the gravitational sector and in the spectrum of D-branes parallel to the breaking coordinate, all mass splittings are proportional to the compactification scale, while global (extended) supersymmetry remains unbroken at tree level for the massless excitations of D-branes transverse to the breaking direction.We study total and partial supersymmetry breaking by freely acting orbifolds, or equivalently by Scherk-Schwarz compactifications, in type I string theory. In particular, we describe a four-dimensional chiral compactification with spontaneously broken N = 1 supersymmetry, some models with partial N = 4 → N = 2 and N = 4 → N = 1 supersymmetry breaking and their heterotic and M-theory duals. A generic feature of these models is that in the gravitational sector and in the spectrum of D-branes parallel to the breaking coordinate, all mass splittings are proportional to the compactification scale, while global (extended) supersymmetry remains unbroken at tree level for the massless excitations of D-branes transverse to the breaking direction

    A Rationale for Long-lived Quarks and Leptons at the LHC: Low Energy Flavour Theory

    Get PDF
    In the framework of gauged flavour symmetries, new fermions in parity symmetric representations of the standard model are generically needed for the compensation of mixed anomalies. The key point is that their masses are also protected by flavour symmetries and some of them are expected to lie way below the flavour symmetry breaking scale(s), which has to occur many orders of magnitude above the electroweak scale to be compatible with the available data from flavour changing neutral currents and CP violation experiments. We argue that, actually, some of these fermions would plausibly get masses within the LHC range. If they are taken to be heavy quarks and leptons, in (bi)-fundamental representations of the standard model symmetries, their mixings with the light ones are strongly constrained to be very small by electroweak precision data. The alternative chosen here is to exactly forbid such mixings by breaking of flavour symmetries into an exact discrete symmetry, the so-called proton-hexality, primarily suggested to avoid proton decay. As a consequence of the large value needed for the flavour breaking scale, those heavy particles are long-lived and rather appropriate for the current and future searches at the LHC for quasi-stable hadrons and leptons. In fact, the LHC experiments have already started to look for them.Comment: 10 pages, 1 figur

    Beyond MFV in family symmetry theories of fermion masses

    Get PDF
    Minimal Flavour Violation (MFV) postulates that the only source of flavour changing neutral currents and CP violation, as in the Standard Model, is the CKM matrix. However it does not address the origin of fermion masses and mixing and models that do usually have a structure that goes well beyond the MFV framework. In this paper we compare the MFV predictions with those obtained in models based on spontaneously broken (horizontal) family symmetries, both Abelian and non-Abelian. The generic suppression of flavour changing processes in these models turns out to be weaker than in the MFV hypothesis. Despite this, in the supersymmetric case, the suppression may still be consistent with a solution to the hierarchy problem, with masses of superpartners below 1 TeV. A comparison of FCNC and CP violation in processes involving a variety of different family quantum numbers should be able to distinguish between various family symmetry models and models satisfying the MFV hypothesis.Comment: 34 pages, no figure

    Moduli stabilization with Fayet-Iliopoulos uplift

    Get PDF
    In the recent years, phenomenological models of moduli stabilization were proposed, where the dynamics of the stabilization is essentially supersymmetric, whereas an O'Rafearthaigh supersymmetry breaking sector is responsible for the "uplift" of the cosmological constant to zero. We investigate the case where the uplift is provided by a Fayet-Iliopoulos sector. We find that in this case the modulus contribution to supersymmetry breaking is larger than in the previous models. A first consequence of this class of constructions is for gauginos, which are heavier compared to previous models. In some of our explicit examples, due to a non-standard gauge-mediation type negative contribution to scalars masses, the whole superpartner spectrum can be efficiently compressed at low-energy. This provides an original phenomenology testable at the LHC, in particular sleptons are generically heavier than the squarks.Comment: 29 pages, 2 figure

    Non anomalous U(1)_H gauge model of flavor

    Full text link
    A non anomalous horizontal U(1)HU(1)_H gauge symmetry can be responsible for the fermion mass hierarchies of the minimal supersymmetric standard model. Imposing the consistency conditions for the absence of gauge anomalies yields the following results: i) unification of leptons and down-type quarks Yukawa couplings is allowed at most for two generations. ii) The Ό\mu term is necessarily somewhat below the supersymmetry breaking scale. iii) The determinant of the quark mass matrix vanishes, and there is no strong CPCP problem. iv) The superpotential has accidental BB and LL symmetries. The prediction mup=0m_{\rm up}=0 allows for an unambiguous test of the model at low energy.Comment: 5 pages, RevTex. Title changed, minor modifications. Final version to appear in Phys. Rev.
    • 

    corecore