5,296 research outputs found
Conceptual Design of a New Large Superconducting Toroid for IAXO, the New International AXion Observatory
The International AXion Observatory (IAXO) will incorporate a new generation
detector for axions, a hypothetical particle, which was postulated to solve one
of the puzzles arising in the standard model of particle physics, namely the
strong CP problem. The new IAXO experiment is aiming at achieving a sensitivity
to the coupling between axions and photons of one order of magnitude beyond the
limits of the current state-of-the-art detector, represented by the CERN Axion
Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field
distributed over a very large volume to convert solar axions into x-ray
photons. Utilizing the designs of the ATLAS barrel and end-cap toroids, a large
superconducting toroidal magnet is currently being designed at CERN to provide
the required magnetic field. The new toroid will be built up from eight, one
meter wide and 20 m long, racetrack coils. The toroid is sized about 4 m in
diameter and 22 m in length. It is designed to realize a peak magnetic field of
5.4 T with a stored energy of 500 MJ. The magnetic field optimization process
to arrive at maximum detector yield is described. In addition, force and stress
calculations are performed to select materials and determine their structure
and sizing. Conductor dimensionality, quench protection and the cryogenic
design are dealt with as well.Comment: 5 pages, 5 figures. To be published in IEEE Trans. Appl. Supercond.
23 (ASC 2012 conference special issue
The Superconducting Toroid for the New International AXion Observatory (IAXO)
IAXO, the new International AXion Observatory, will feature the most
ambitious detector for solar axions to date. Axions are hypothetical particles
which were postulated to solve one of the puzzles arising in the standard model
of particle physics, namely the strong CP (Charge conjugation and Parity)
problem. This detector aims at achieving a sensitivity to the coupling between
axions and photons of one order of magnitude beyond the limits of the current
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap
toroids, a large superconducting toroid is being designed. The toroid comprises
eight, one meter wide and twenty one meters long racetrack coils. The assembled
toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250
tons. The useful field in the bores is 2.5 T while the peak magnetic field in
the windings is 5.4 T. At the operational current of 12 kA the stored energy is
500 MJ. The racetrack type of coils are wound with a reinforced Aluminum
stabilized NbTi/Cu cable and are conduction cooled. The coils optimization is
shortly described as well as new concepts for cryostat, cold mass, supporting
structure and the sun tracking system. Materials selection and sizing,
conductor, thermal loads, the cryogenics system and the electrical system are
described. Lastly, quench simulations are reported to demonstrate the system's
safe quench protection scheme.Comment: To appear in IEEE Trans. Appl. Supercond. MT 23 issue. arXiv admin
note: substantial text overlap with arXiv:1308.2526, arXiv:1212.463
Hybrid mean field and real space model for vacancy diffusion-mediated annealing of radiation defects
In a fusion or advanced fission reactor, high energy neutrons induce the
formation of extended defect clusters in structural component materials,
degrading their properties over time. Such damage can be partially recovered
via a thermal annealing treatment. Therefore, for the design and operation of
fusion and advanced fission nuclear energy systems it is critical to estimate
and predict the annealing timescales for arbitrary configurations of defect
clusters. In our earlier paper [I. Rovelli, S. L. Dudarev, and A. P. Sutton, J.
Mech. Phys. Solids 103, 121 (2017)] we extended the Green function formulation
by Gu, Xiang et al. [Y. Gu, Y. Xiang, S. S. Quek, and D. J. Srolovitz, J. Mech.
Phys. Solids 83, 319 (2015)] for the climb of curved dislocations, to include
the evaporation and growth of cavities and vacancy clusters, and take into
account the effect of free surfaces. In this work, we further develop this
model to include the effect of radiation defects that are below the
experimental detection limit, via a mean field approach coupled with an
explicit treatment of the evolution of discrete defect clusters distributed in
real space. We show that randomly distributed small defects screen diffusive
interactions between larger discrete clusters. The evolution of the coupled
system is modelled self-consistently. We also simulate the evolution of defects
in an infinite laterally extended thin film, using the Ewald summation of
screened Yukawa-type diffusive propagators
High energy collision cascades in tungsten: dislocation loops structure and clustering scaling laws
Recent experiments on in-situ high-energy self-ion irradiation of tungsten
(W) show the occurrence of unusual cascade damage effects resulting from single
ion impacts, shedding light on the nature of radiation damage expected in the
tungsten components of a fusion reactor. In this paper, we investigate the
dynamics of defect production in 150 keV collision cascades in W at atomic
resolution, using molecular dynamics simulations and comparing predictions with
experimental observations. We show that cascades in W exhibit no subcascade
break-up even at high energies, producing a massive, unbroken molten area,
which facilitates the formation of large defect clusters. Simulations show
evidence of the formation of both 1/2 and interstitial-type
dislocation loops, as well as the occurrence of cascade collapse resulting in
vacancy-type dislocation loops, in excellent agreement with experimental
observations. The fractal nature of the cascades gives rise to a scale-less
power law type size distribution of defect clusters.Comment: 6 pages, 3 figure
Hubbard-like Hamiltonians for interacting electrons in s, p and d orbitals
Hubbard-like Hamiltonians are widely used to describe on-site Coulomb
interactions in magnetic and strongly-correlated solids, but there is much
confusion in the literature about the form these Hamiltonians should take for
shells of p and d orbitals. This paper derives the most general s, p and d
orbital Hubbard-like Hamiltonians consistent with the relevant symmetries, and
presents them in ways convenient for practical calculations. We use the full
configuration interaction method to study p and d orbital dimers and compare
results obtained using the correct Hamiltonian and the collinear and vector
Stoner Hamiltonians. The Stoner Hamiltonians can fail to describe properly the
nature of the ground state, the time evolution of excited states, and the
electronic heat capacity.Comment: Updated the paper to make some clarifications and include colour
figure
New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory
Axions are hypothetical particles that were postulated to solve one of the
puzzles arising in the standard model of particle physics, namely the strong CP
(Charge conjugation and Parity) problem. The new International AXion
Observatory (IAXO) will incorporate the most promising solar axions detector to
date, which is designed to enhance the sensitivity to the axion-photon coupling
by one order of magnitude beyond the limits of the current state-of-the-art
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions into X-ray photons. Inspired by the successful realization of the ATLAS
barrel and end-cap toroids, a very large superconducting toroid is currently
designed at CERN to provide the required magnetic field. This toroid will
comprise eight, one meter wide and twenty one meter long, racetrack coils. The
system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field
is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization
process to arrive at maximum detector yield is described. In addition,
materials selection and their structure and sizing has been determined by force
and stress calculations. Thermal loads are estimated to size the necessary
cryogenic power and the concept of a forced flow supercritical helium based
cryogenic system is given. A quench simulation confirmed the quench protection
scheme.Comment: Accepted for publication in Adv. Cryo. Eng. (CEC/ICMC 2013 special
issue
How does an interacting many-body system tunnel through a potential barrier to open space?
The tunneling process in a many-body system is a phenomenon which lies at the
very heart of quantum mechanics. It appears in nature in the form of
alpha-decay, fusion and fission in nuclear physics, photoassociation and
photodissociation in biology and chemistry. A detailed theoretical description
of the decay process in these systems is a very cumbersome problem, either
because of very complicated or even unknown interparticle interactions or due
to a large number of constitutent particles. In this work, we theoretically
study the phenomenon of quantum many-body tunneling in a more transparent and
controllable physical system, in an ultracold atomic gas. We analyze a full,
numerically exact many-body solution of the Schr\"odinger equation of a
one-dimensional system with repulsive interactions tunneling to open space. We
show how the emitted particles dissociate or fragment from the trapped and
coherent source of bosons: the overall many-particle decay process is a quantum
interference of single-particle tunneling processes emerging from sources with
different particle numbers taking place simultaneously. The close relation to
atom lasers and ionization processes allows us to unveil the great relevance of
many-body correlations between the emitted and trapped fractions of the
wavefunction in the respective processes.Comment: 18 pages, 4 figures (7 pages, 2 figures supplementary information
Interatomic potentials for mixed oxide (MOX) nuclear fuels
We extend our recently developed interatomic potentials for UO_{2} to the
mixed oxide fuel system (U,Pu,Np)O_{2}. We do so by fitting against an
extensive database of ab initio results as well as to experimental
measurements. The applicability of these interactions to a variety of mixed
environments beyond the fitting domain is also assessed. The employed formalism
makes these potentials applicable across all interatomic distances without the
need for any ambiguous splining to the well-established short-range
Ziegler-Biersack-Littmark universal pair potential. We therefore expect these
to be reliable potentials for carrying out damage simulations (and Molecular
Dynamics simulations in general) in nuclear fuels of varying compositions for
all relevant atomic collision energies
- …
