8,103 research outputs found
Simultaneous Detection of H and D NMR Signals in a micro-Tesla Field
We present NMR spectra of remote-magnetized deuterated water, detected in an
unshielded environment by means of a differential atomic magnetometer. The
measurements are performed in a T field, while pulsed techniques are
applied -following the sample displacement- in a 100~T field, to tip both
D and H nuclei by controllable amounts. The broadband nature of the detection
system enables simultaneous detection of the two signals and accurate
evaluation of their decay times. The outcomes of the experiment demonstrate the
potential of ultra-low-field NMR spectroscopy in important applications where
the correlation between proton and deuteron spin-spin relaxation rates as a
function of external parameters contains significant information.Comment: 7 pages (letter, 4 pages) plus supplemental material as an appendix.
This document is the unedited author's version of a Submitted Work that was
subsequently accepted for publication in Journal of Phys. Chem. Lett.,
copyright American Chemical Society after peer review. To access the final
edited and published work see:
pubs.acs.org/doi/abs/10.1021/acs.jpclett.7b0285
Membrane guanylate cyclase, a multimodal transduction machine: history, present, and future directions
A sequel to these authors’ earlier comprehensive reviews which covered the field of mammalian membrane guanylate cyclase (MGC) from its origin to the year 2010, this article contains 13 parts. The first is HISTORICAL and covers MGC from the year 1963-1987, summarizing its colorful developmental stages from its passionate pursuit to its consolidation. The second deals with the establishment of its BIOCHEMICAL IDENTITY. MGC becomes the transducer of a hormonal signal and founder of the peptide hormone receptor family, and creates the notion that hormone signal transduction is its sole physiological function. The third defines its EXPANSION. The discovery of ROS-GC subfamily is made and it links ROS-GC with the physiology of PHOTOTRANSDUCTION. Parts 4 to 7 cover its BIOCHEMISTRY and PHYSIOLOGY. The noteworthy events are that augmented by GCAPs, ROS-GC proves to be a transducer of the free Ca2+ signals generated within neurons; ROS-GC becomes a two-component transduction system and establishes itself as a source of cyclic GMP, the second messenger of phototransduction. Part 8 demonstrates how this knowledge begins to be TRANSLATED into the diagnosis and providing the molecular definition of retinal dystrophies. Part 9 discusses a striking property of ROS-GC where it becomes a [Ca2+]i bimodal switch and transcends its signaling role in other neural transduction processes. In this course, discovery of the first CD-GCAP (Ca2+-dependent guanylate cycles activator), the S100B protein, is made. It extends the role of ROS-GC transduction system beyond the photoreceptor cells to the signaling processes in the synapse region between photoreceptor and cone ON-bipolar cells; in Part 10, discovery of ANOTHER CD-GCAP, NC, is made and its linkage with signaling of the inner plexiform layer neurons is established. Part 11 discusses linkage of the ROS-GC transduction system with other sensory transduction processes: Pineal gland, Olfaction and Gustation. In the next, part 12, a the
Ca2+-sensors and ROS-GC: interlocked sensory transduction elements: a review
From its initial discovery that ROS-GC membrane guanylate cyclase is a mono-modal Ca2+-transduction system linked exclusively with the photo-transduction machinery to the successive finding that it embodies a remarkable bimodal Ca2+ signaling device, its widened transduction role in the general signaling mechanisms of the sensory neuron cells was envisioned. A theoretical concept was proposed where Ca2+-modulates ROS-GC through its generated cyclic GMP via a nearby cyclic nucleotide gated channel and creates a hyper- or depolarized sate in the neuron membrane (Ca2+ Binding Proteins 1:1, 7–11, 2006). The generated electric potential then becomes a mode of transmission of the parent [Ca2+]i signal. Ca2+ and ROS-GC are interlocked messengers in multiple sensory transduction mechanisms. This comprehensive review discusses the developmental stages to the present status of this concept and demonstrates how neuronal Ca2+-sensor (NCS) proteins are the interconnected elements of this elegant ROS-GC transduction system. The focus is on the dynamism of the structural composition of this system, and how it accommodates selectivity and elasticity for the Ca2+ signals to perform multiple tasks linked with the SENSES of vision, smell, and possibly of taste and the pineal gland. An intriguing illustration is provided for the Ca2+ sensor GCAP1 which displays its remarkable ability for its flexibility in function from being a photoreceptor sensor to an odorant receptor sensor. In doing so it reverses its function from an inhibitor of ROS-GC to the stimulator of ONE-GC membrane guanylate cyclase
Brownian motion in a non-homogeneous force field and photonic force microscope
The Photonic Force Microscope (PFM) is an opto-mechanical technique based on
an optical trap that can be assumed to probe forces in microscopic systems.
This technique has been used to measure forces in the range of pico- and
femto-Newton, assessing the mechanical properties of biomolecules as well as of
other microscopic systems. For a correct use of the PFM, the force field to
measure has to be invariable (homogeneous) on the scale of the Brownian motion
of the trapped probe. This condition implicates that the force field must be
conservative, excluding the possibility of a rotational component. However,
there are cases where these assumptions are not fulfilled Here, we show how to
improve the PFM technique in order to be able to deal with these cases. We
introduce the theory of this enhanced PFM and we propose a concrete analysis
workflow to reconstruct the force field from the experimental time-series of
the probe position. Furthermore, we experimentally verify some particularly
important cases, namely the case of a conservative or rotational force-field
Fractal Descriptors in the Fourier Domain Applied to Color Texture Analysis
The present work proposes the development of a novel method to provide
descriptors for colored texture images. The method consists in two steps. In
the first, we apply a linear transform in the color space of the image aiming
at highlighting spatial structuring relations among the color of pixels. In a
second moment, we apply a multiscale approach to the calculus of fractal
dimension based on Fourier transform. From this multiscale operation, we
extract the descriptors used to discriminate the texture represented in digital
images. The accuracy of the method is verified in the classification of two
color texture datasets, by comparing the performance of the proposed technique
to other classical and state-of-the-art methods for color texture analysis. The
results showed an advantage of almost 3% of the proposed technique over the
second best approach.Comment: Chaos, Volume 21, Issue 4, 201
Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system
Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms. © 2014 Baron et al
Recommended from our members
ROS-GC interlocked Ca2+-sensor S100B protein signaling in cone photoreceptors: review
Photoreceptor rod outer segment membrane guanylate cyclase (ROS-GC) is central to visual transduction; it generates cyclic GMP, the second messenger of the photon signal. Photoexcited rhodopsin initiates a biochemical cascade that leads to a drop in the intracellular level of cyclic GMP and closure of cyclic nucleotide gated ion channels. Recovery of the photoresponse requires resynthesis of cyclic GMP, typically by a pair of ROS-GCs, 1 and 2. In rods, ROS-GCs exist as complexes with guanylate cyclase activating proteins (GCAPs), which are Ca2+-sensing elements. There is a light-induced fall in intracellular Ca2+. As Ca2+ dissociates from GCAPs in the 20–200 nM range, ROS-GC activity rises to quicken the photoresponse recovery. GCAPs then progressively turn down ROS-GC activity as Ca2+ and cyclic GMP levels return to baseline. To date, GCAPs mediate the only known mechanism of ROS-GC regulation in the photoreceptors. However, in mammalian cone outer segments, cone synapses and ON bipolar cells, another Ca2+ sensor protein, S100B, complexes with ROS-GC1 and senses the Ca2+ signal with a K1/2 of 400 nM. Unlike GCAPs, S100B stimulates ROS-GC activity when Ca2+ is bound. Thus, the ROS-GC system in cones functions as a Ca2+ bimodal switch; with rising intracellular Ca2+, its activity is first turned down by GCAPs and then turned up by S100B. This presentation provides a historical perspective on the role of S100B in the photoreceptors, offers a pictorial model for the “bimodal” operation of the ROS-GC switch and projects future tasks that are needed to understand its operation. Some accounts of this review have been adopted from the original publications of these authors
Population inversion of a NAHS mixture adsorbed into a cylindrical pore
A cylindrical nanopore immersed in a non-additive hard sphere binary fluid is
studied by means of integral equation theories and Monte Carlo simulations. It
is found that at low and intermediate values of the bulk total number density
the more concentrated bulk species is preferentially absorbed by the pore, as
expected. However, further increments of the bulk number density lead to an
abrupt population inversion in the confined fluid and an entropy driven
prewetting transition at the outside wall of the pore. These phenomena are a
function of the pore size, the non-additivity parameter, the bulk number
density, and particles relative number fraction. We discuss our results in
relation to the phase separation in the bulk.Comment: 7 pages, 8 Figure
Artificial Neural Network-based error compensation procedure for low-cost encoders
An Artificial Neural Network-based error compensation method is proposed for
improving the accuracy of resolver-based 16-bit encoders by compensating for
their respective systematic error profiles. The error compensation procedure,
for a particular encoder, involves obtaining its error profile by calibrating
it on a precision rotary table, training the neural network by using a part of
this data and then determining the corrected encoder angle by subtracting the
ANN-predicted error from the measured value of the encoder angle. Since it is
not guaranteed that all the resolvers will have exactly similar error profiles
because of the inherent differences in their construction on a micro scale, the
ANN has been trained on one error profile at a time and the corresponding
weight file is then used only for compensating the systematic error of this
particular encoder. The systematic nature of the error profile for each of the
encoders has also been validated by repeated calibration of the encoders over a
period of time and it was found that the error profiles of a particular encoder
recorded at different epochs show near reproducible behavior. The ANN-based
error compensation procedure has been implemented for 4 encoders by training
the ANN with their respective error profiles and the results indicate that the
accuracy of encoders can be improved by nearly an order of magnitude from
quoted values of ~6 arc-min to ~0.65 arc-min when their corresponding
ANN-generated weight files are used for determining the corrected encoder
angle.Comment: 16 pages, 4 figures. Accepted for Publication in Measurement Science
and Technology (MST
Parsimonious Kernel Fisher Discrimination
By applying recent results in optimization transfer, a new algorithm for kernel Fisher Discriminant Analysis is provided that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The algorithm is simple, easily programmed and is shown to perform as well as or better than a number of leading machine learning algorithms on a substantial benchmark. It is then applied to a set of extreme small-sample-size problems in virtual screening where it is found to be less accurate than a currently leading approach but is still comparable in a number of cases
- …