17 research outputs found

    DEAD-Box Helicase 4 (Ddx4)+ Stem Cells Sustain Tumor Progression in Non-Serous Ovarian Cancers

    Get PDF
    DEAD-Box Helicase 4 (Ddx4)+ ovarian stem cells are able to differentiate into several cell types under appropriate stimuli. Ddx4 expression has been correlated with poor prognosis of serous ovarian cancer (OC), while the potential role of Ddx4+ cells in non-serous epithelial OC (NS-EOC) is almost unexplored. The aim of this study was to demonstrate the presence of Ddx4+ cells in NS-EOC and investigate the effect of follicle-stimulating hormone (FSH) on this population. Increased Ddx4 expression was demonstrated in samples from patients with advanced NS-EOC, compared to those with early-stage disease. Under FSH stimulation, OC-derived Ddx4+ cells differentiated into mesenchymal-like (ML) cells, able to deregulate genes involved in cell migration, invasiveness, stemness and chemoresistance in A2780 OC cells. This effect was primarily induced by ML-cells deriving from advanced NS-EOC, suggesting that a tumor-conditioned germ cell niche inhabits its microenvironment and is able to modulate, in a paracrine manner, tumor cell behavior through transcriptome modulation

    cutaneous metastasis as a primary presentation of a pulmonary enteric adenocarcinoma

    Get PDF
    Background: Primary pulmonary enteric adenocarcinoma (PEAC) is a rare non-small cell lung cancer subtype sharing morphologic and immunohistochemical features with colorectal adenocarcinoma. Given the frequency of lung metastases in colorectal cancer, the differential diagnosis of PEAC according to routine morphological and immunohistochemical findings may be difficult. Genome sequence by next-generation sequencing has recently introduced new perspectives to better define the diagnosis and tumor sensitivity to treatments, while the rarity of this subtype of cancer still limits the current knowledge of its molecular features and provides no information to address patients to tailored therapies. Methods: We diagnosed a rare case of subcutaneous metastasis as a first symptom of a PEAC. Formalin-fixed paraffin-embedded samples of the primary tumor and subcutaneous metastases were examined by immunohistochemistry, and subsequently by targeted next-generation sequencing analysis. Results: Morphological and immunohistochemical findings suggested a rare case of metastatic pulmonary adenocarcinoma with enteric aspects. Next-generation sequencing analysis performed on both the primary tumor sample and the cutaneous lesion identified two pathogenic variants on CDKN2A and KRAS in both of them. However, the metastasis showed two additional pathogenic mutations located in SMAD4 and FLT3 genes. Conclusions: We describe for the first time an extensive molecular analysis on a rare case of PEAC with an unusual cutaneous metastasis. Our observation suggests that a specific pattern of mutations is harbored in this neoplasm, and that additional molecular studies may provide further information to identify prognostic and hopefully predictive genes of response to treatment

    Circulating tumor cells from melanoma patients show phenotypic plasticity and metastatic potential in xenograft NOD.CB17 mice

    No full text
    Innovative therapies have improved the overall survival in melanoma, although a high number of patients still experience disease progression or recurrence. Ex-vivo culture of circulating tumour cells (CTCs) represents a valuable laboratory resource for in-depth characterization of rare cell populations responsible for disease progression

    A Novel Nutraceuticals Mixture Improves Liver Steatosis by Preventing Oxidative Stress and Mitochondrial Dysfunction in a NAFLD Model

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disease globally, and represents a health care burden as treatment options are very scarce. The reason behind the NAFLD progression to non-alcoholic steatohepatitis (NASH) is not completely understood. Recently, the deficiency of micronutrients (e.g., vitamins, minerals, and other elements) has been suggested as crucial in NAFLD progression, such that recent studies reported the potential hepatic antioxidant properties of micronutrients supplementation. However, very little is known. Here we have explored the potential beneficial effects of dietary supplementation with FLINAX, a novel mixture of nutraceuticals (i.e., vitamin E, vitamin D3, olive dry-extract, cinnamon dry-extract and fish oil) in a NAFLD model characterized by oxidative stress and mitochondrial function impairment. Steatosis was firstly induced in Wistar rats by feeding with a high-fat/high-cholesterol diet for 4 weeks, and following this the rats were divided into two groups. One group (n = 8) was treated for 2 weeks with a normal chow-diet, while a second group (n = 8) was fed with a chow-diet supplemented with 2% FLINAX. Along with the entire experiment (6 weeks), a third group of rats was fed with a chow-diet only as control. Statistical analysis was performed with Student's T test or one-way ANOVA followed by post-hoc Bonferroni test when appropriate. Steatosis, oxidative stress and mitochondrial respiratory chain (RC) complexes activity were analyzed in liver tissues. The dietary supplementation with FLINAX significantly improved hepatic steatosis and lipid accumulation compared to untreated rats. The mRNA and protein levels analysis showed that CPT1A and CPT2 were up-regulated by FLINAX, suggesting the enhancement of fatty acids oxidation (FAO). Important lipoperoxidation markers (i.e., HNE- and MDA-protein adducts) and the quantity of total mitochondrial oxidized proteins were significantly lower in FLINAX-treated rats. Intriguingly, FLINAX restored the mitochondrial function, stimulating the activity of mitochondrial RC complexes (i.e., I, II, III and ATP-synthase) and counteracting the peroxide production from pyruvate/malate (complex I) and succinate (complex II). Therefore, the supplementation with FLINAX reprogrammed the cellular energy homeostasis by restoring the efficiency of mitochondrial function, with a consequent improvement in steatosis

    A Novel Nutraceuticals Mixture Improves Liver Steatosis by Preventing Oxidative Stress and Mitochondrial Dysfunction in a NAFLD Model

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disease globally, and represents a health care burden as treatment options are very scarce. The reason behind the NAFLD progression to non-alcoholic steatohepatitis (NASH) is not completely understood. Recently, the deficiency of micronutrients (e.g., vitamins, minerals, and other elements) has been suggested as crucial in NAFLD progression, such that recent studies reported the potential hepatic antioxidant properties of micronutrients supplementation. However, very little is known. Here we have explored the potential beneficial effects of dietary supplementation with FLINAX, a novel mixture of nutraceuticals (i.e., vitamin E, vitamin D3, olive dry-extract, cinnamon dry-extract and fish oil) in a NAFLD model characterized by oxidative stress and mitochondrial function impairment. Steatosis was firstly induced in Wistar rats by feeding with a high-fat/high-cholesterol diet for 4 weeks, and following this the rats were divided into two groups. One group (n = 8) was treated for 2 weeks with a normal chow-diet, while a second group (n = 8) was fed with a chow-diet supplemented with 2% FLINAX. Along with the entire experiment (6 weeks), a third group of rats was fed with a chow-diet only as control. Statistical analysis was performed with Student’s T test or one-way ANOVA followed by post-hoc Bonferroni test when appropriate. Steatosis, oxidative stress and mitochondrial respiratory chain (RC) complexes activity were analyzed in liver tissues. The dietary supplementation with FLINAX significantly improved hepatic steatosis and lipid accumulation compared to untreated rats. The mRNA and protein levels analysis showed that CPT1A and CPT2 were up-regulated by FLINAX, suggesting the enhancement of fatty acids oxidation (FAO). Important lipoperoxidation markers (i.e., HNE- and MDA-protein adducts) and the quantity of total mitochondrial oxidized proteins were significantly lower in FLINAX-treated rats. Intriguingly, FLINAX restored the mitochondrial function, stimulating the activity of mitochondrial RC complexes (i.e., I, II, III and ATP-synthase) and counteracting the peroxide production from pyruvate/malate (complex I) and succinate (complex II). Therefore, the supplementation with FLINAX reprogrammed the cellular energy homeostasis by restoring the efficiency of mitochondrial function, with a consequent improvement in steatosis

    Metabolic reprogramming in inflammatory microglia indicates a potential way of targeting inflammation in Alzheimer's disease

    No full text
    Microglia activation drives the pro-inflammatory activity in the early stages of Alzheimer's disease (AD). However, the mechanistic basis is elusive, and the hypothesis of targeting microglia to prevent AD onset is little explored. Here, we demonstrated that upon LPS exposure, microglia shift towards an energetic phenotype characterised by high glycolysis and high mitochondrial respiration with dysfunction. Although the activity of electron transport chain (ETC) complexes is boosted by LPS, this is mostly devoted to the generation of reactive oxygen species. We showed that by inhibiting succinate dehydrogenase (SDH) with dimethyl malonate (DMM), it is possible to modulate the LPS-induced metabolic rewiring, facilitating an anti-inflammatory phenotype. DMM improves mitochondrial function in a direct way and by reducing LPS-induced mitochondrial biogenesis. Moreover, the block of SDH with DMM inhibits the recruitment of hypoxia inducible-factor 1 α (HIF-1α), which mediates the induction of glycolysis and cytokine expression. Similar bioenergetic alterations were observed in the microglia isolated from AD mice (3xTg-AD), which present high levels of circulating LPS and brain toll-like receptor4 (TLR4). Moreover, this well-established model of AD was used to show a potential effect of SDH inhibition in vivo as DMM administration abrogated brain inflammation and modulated the microglia metabolic alterations of 3xTg-AD mice. The RNA-sequencing analysis from a public dataset confirmed the consistent transcription of genes encoding for ETC subunits in the microglia of AD mice (5xFAD). In conclusion, TLR4 activation promotes metabolic changes and the pro-inflammatory activity in microglia, and SDH might represent a promising therapeutic target to prevent AD development
    corecore