40 research outputs found
High triplet energy host materials for blue TADF OLEDsâA tool box approach
The synthesis of stable blue TADF emitters and the corresponding matrix materials is one of the biggest challenges in the development of novel OLED materials. We present six bipolar host materials based on triazine as an acceptor and two types of donors, namely, carbazole, and acridine. Using a tool box approach, the chemical structure of the materials is changed in a systematic way. Both the carbazole and acridine donor are connected to the triazine acceptor via a para- or a meta-linked phenyl ring or are linked directly to each other. The photophysics of the materials has been investigated in detail by absorption-, fluorescence-, and phosphorescence spectroscopy in solution. In addition, a number of DFT calculations have been made which result in a deeper understanding of the photophysics. The presence of a phenyl bridge between donor and acceptor cores leads to a considerable decrease of the triplet energy due to extension of the overlap electron and hole orbitals over the triazine-phenyl core of the molecule. This decrease is more pronounced for the para-phenylene than for the meta-phenylene linker. Only direct connection of the donor group to the triazine core provides a high energy of the triplet state of 2.97 eV for the carbazole derivative CTRZ and 3.07 eV for the acridine ATRZ. This is a major requirement for the use of the materials as a host for blue TADF emitters.We acknowledge funding through the EU Marie Sklodowska-Curie ITN TADFlife grant (GA. 812872). This work was also supported by the Universidad Carlos III de Madrid, the European Union's Seventh Framework Programme for research
Thermally activated delayed fluorescent dendrimers that underpin high-efficiency host-free solution-processed organic light emitting diodes
This project has received funding from the European Unionâs Horizon 2020 research and innovation program under the Marie SkĆodowska-Curie grant agreements No. 838009 (TSFP) and No 812872 (TADFlife). D.S. acknowledges support from the Marie SkĆodowska-Curie Individual Fellowship (TSFP), the National Postdoctoral Program for Innovative Talents (BX201700164), and the Jiangsu Planned Projects for Postdoctoral Research Funds (2018K011A). S.B. acknowledges support from the German Science Foundation (392306670/HU2362). The St Andrews team thank the Leverhulme Trust (RPG2016047) and EPSRC (EP/P010482/1) for financial support. X.Z. would like to thank the support from the National Key Research & Development Program of China (Grant No. 2020YFA0714601, 2020YFA0714604), the National Natural Science Foundation of China (Grant No. 52130304, 51821002), Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices. E. Z.-C. is a Royal Society Leverhulme Trust Senior Research fellow (SRF\R1\201089).The development of high-performance solution-processed organic light-emitting diodes (OLEDs) remains a challenge. An effective solution, highlighted in this work, is to use highly efficient thermally activated delayed fluorescence (TADF) dendrimers as emitters. Here, the design, synthesis, density functional theory (DFT) modeling, and photophysics of three triazine-based dendrimers, tBuCz2pTRZ , tBuCz2mTRZ , and tBuCz2m2pTRZ , is reported, which resolve the conflicting requirements of achieving simultaneously a small ÎEST and a large oscillator strength by incorporating both meta- and para-connected donor dendrons about a central triazine acceptor. The solution-processed OLED containing a host-free emitting layer exhibits an excellent maximum external quantum efficiency (EQEmax) of 28.7%, a current efficiency of 98.8 cd Aâ1, and a power efficiency of 91.3 lm Wâ1. The device emits with an electroluminescence maximum, λEL, of 540 nm and Commission International de l'Ăclairage (CIE) color coordinates of (0.37, 0.57). This represents the most efficient host-free solution-processed OLED reported to date. Further optimization directed at improving the charge balance within the device results in an emissive layer containing 30 wt% OXD-7, which leads to an OLED with the similar EQEmax of 28.4% but showing a significantly improved efficiency rolloff where the EQE remains high at 22.7% at a luminance of 500 cd mâ2.Publisher PDFPeer reviewe
Regiochemistry of donor dendrons controls the performance of thermally activated delayed fluorescence dendrimer emitters for high efficiency solution-processed organic light-emitting diodes
This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie SkĆodowska-Curie grant agreement No. 838009 (TSFP) and No 812872 (TADFlife). D.S. acknowledges support from the Marie SkĆodowska-Curie Individual Fellowship, the National Postdoctoral Program for Innovative Talents (BX201700164), the Jiangsu Planned Projects for Postdoctoral Research Funds (2018K011A). E.Z.-C. is a Royal Society Leverhulme Trust Senior Research fellow (SRFâR1â201089). The St Andrews team would also like to thank the Leverhulme Trust (RPG-2016047) and EPSRC (EP/P010482/1) for financial support. This work was also supported by Comunidad de Madrid (Spain) â multiannual agreement with UC3M (âExcelencia para el Profesorado Universitarioâ â EPUC3M14) â Fifth regional research plan 2016-2020 and by the Spanish Ministry of Science, Innovation and Universities (MICINN) through project RTI2018-101020-B-100. X.Z. would like to thank the support from the National Key Research & Development Program of China (Grant No. 2020YFA0714601, 2020YFA0714604), the National Natural Science Foundation of China (Grant No. 52130304, 51821002), Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.The potential of dendrimers exhibiting thermally activated delayed fluorescence (TADF) as emitters in solution-processed organic light-emitting diodes (OLEDs) has to date not yet been realized. This in part is due to a poor understanding of the structureâproperty relationship in dendrimers where reports of detailed photophysical characterization and mechanism studies are lacking. In this report, using absorption and solvatochromic photoluminescence studies in solution, the origin and character of the lowest excited electronic states in dendrimers with multiple dendritic electron-donating moieties connected to a central electron-withdrawing core via a para- or a meta-phenylene bridge is probed. Characterization of host-free OLEDs reveals the superiority of meta-linked dendrimers as compared to the already reported para-analogue. Comparative temperature-dependent time-resolved solid-state photoluminescence measurements and quantum chemical studies explore the effect of the substitution mode on the TADF properties and the reverse intersystem crossing (RISC) mechanism, respectively. For TADF dendrimers with similarly small âEST, it is observed that RISC can be enhanced by the regiochemistry of the donor dendrons due to control of the reorganization energies, which is a heretofore unexploited strategy that is distinct from the involvement of intermediate triplet states through a nonadiabatic (vibronic) coupling with the lowest singlet charge transfer state.Publisher PDFPeer reviewe
A deep blue B,N-doped heptacene emitter that shows both thermally activated delayed fluorescence and delayed fluorescence by triplet-triplet annihilation
Authors thank the Leverhulme Trust (RPG-2016-047). This project has received funding from the European Unionâs Horizon 2020 research and innovation programme under the Marie SkĆodowska Curie grant agreement No 838885 (NarrowbandSSL) and 812872 (TADFlife). We thank Umicore for their generous supply of catalysts. S.S. acknowledges support from the Marie SkĆodowska-Curie Individual Fellowship. SB acknowledges support from the Bayrisches Staatsministerium fuÌr Wissenschaft und Kunst (Stmwk) in the framework of the initiative "SolTech", as well as from the German Science foundation (DFG) (No. 392306670). Computational resources have been provided by the Consortium des EÌquipements de Calcul Intensif (CEÌCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the FeÌdeÌration Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n111754.An easy-to-access, near-UV-emitting linearly extended B,N-doped heptacene with high thermal stability is designed and synthesized in good yields. This compound exhibits thermally activated delayed fluorescence (TADF) at ambient temperature from a multiresonant (MR) state and represents a rare example of a non-triangulene-based MR-TADF emitter. At lower temperatures tripletâtriplet annihilation dominates. The compound simultaneously possesses narrow, deep-blue emission with CIE coordinates of (0.17, 0.01). While delayed fluorescence results mainly from tripletâtriplet annihilation at lower temperatures in THF solution, where aggregates form upon cooling, the TADF mechanism takes over around room temperature in solution when the aggregates dissolve or when the compound is well dispersed in a solid matrix. The potential of our molecular design to trigger TADF in larger acenes is demonstrated through the accurate prediction of ÎEST using correlated wave-function-based calculations. On the basis of these calculations, we predicted dramatically different optoelectronic behavior in terms of both ÎEST and the optical energy gap of two constitutional isomers where only the boron and nitrogen positions change. A comprehensive structural, optoelectronic, and theoretical investigation is presented. In addition, the ability of the achiral molecule to assemble on a Au(111) surface to a highly ordered layer composed of enantiomorphic domains of racemic entities is demonstrated by scanning tunneling microscopy.PostprintPeer reviewe
Substitution effects on a new pyridylbenzimidazole acceptor for thermally activated delayed fluorescence and their use in organic light-emitting diodes
The St Andrews team would like to thank the Leverhulme Trust (RPG-2016-047) for financial support. P.R. acknowledges support from a Marie SkĆodowska-Curie Individual Fellowship (MCIF; No. 749557). S.M.S acknowledges support from the Marie SkĆodowska-Curie Individual Fellowship, grant 27 agreement no. 838885 (NarrowbandSSL). Computational resources have been provided by the Consortium des Ăquipements de Calcul Intensif (CĂCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the FĂ©dĂ©ration Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n1117545. We acknowledge support from the European Unionâs Horizon 2020 research and innovation programme under the ITN TADFlife (GA 812872). Y.O. acknowledges funding by the Fonds de la Recherche Scientifique-FNRS under Grant n° F.4534.21 (MIS-IMAGINE). D.B. is a FNRS Research Director.In this work a new acceptor is used for use in thermally activated delayed fluorescence (TADF) emitters, pyridylbenzimidazole, which when coupled with phenoxazine allows efficient TADF to occur. N-functionalization of the benzimidazole using methyl, phenyl, and tert-butyl groups permits color tuning and suppression of aggregation-caused quenching (ACQ) with minimal impact on the TADF efficiency. The functionalized derivatives support a higher doping of 7 wt% before a fall-off in photoluminescence quantum yields is observed, in contrast with the parent compound, which undergoes ACQ at doping concentrations greater than 1 wt%. Complex conformational dynamics, reflected in the time-resolved decay profile, is found. The singletâtriplet energy gap, ÎEST, is modulated by N-substituents of the benzimidazole and ranges of between 0.22 and 0.32 eV in doped films. Vacuum-deposited organic light-emitting diodes, prepared using three of the four analogs, show maximum external quantum efficiencies, EQEmax, of 23.9%, 22.2%, and 18.6% for BIm(Me)PyPXZ , BIm(Ph)PyPXZ , and BImPyPXZ , respectively, with a correlated and modest efficiency roll-off at 100 cd mâ2 of 19% 13%, and 24% of the EQEmax, respectively.Publisher PDFPeer reviewe
Diindolocarbazole - achieving multiresonant thermally activated delayed fluorescence without the need for acceptor units.
peer reviewedIn this work we present a new multi-resonance thermally activated delayed fluorescence (MR-TADF) emitter paradigm, demonstrating that the structure need not require the presence of acceptor atoms. Based on an in silico design, the compound DiICzMes4 possesses a red-shifted emission, enhanced photoluminescence quantum yield, and smaller singlet-triplet energy gap, ÎEST, than the parent indolocarbazole that induces MR-TADF properties. Coupled cluster calculations accurately predict the magnitude of the ÎEST when the optimized singlet and triplet geometries are used. Slow yet optically detectable reverse intersystem crossing contributes to low efficiency in organic light-emitting diodes using DiICzMes4 as the emitter. However, when used as a terminal emitter in combination with a TADF assistant dopant within a hyperfluorescence device architecture, maximum external quantum efficiencies of up to 16.5% were achieved at CIE (0.15, 0.11). This represents one of the bluest hyperfluorescent devices reported to date. Simultaneously, recognising that MR-TADF emitters do not require acceptor atoms reveals an unexplored frontier in materials design, where yet greater performance may yet be discovered
Improving processability and efficiency of Resonant TADF emitters : a design strategy
This work is funded by the EC through the Horizon 2020 Marie Sklodowska-Curie ITN project TADFlife. The St Andrews team would also like to thank the Leverhulme Trust (RPG-2016- 047) and EPSRC (EP/P010482/1) for financial support. Computational resources have been provided by the Consortium des EÌquipements de Calcul Intensif (CEÌCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the FeÌdeÌration Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n1117545. AP acknowledges the financial support from the Marie Curie Fellowship (MILORD project, N°. 748042). DB is a FNRS Research Director. We thank Franck-Julian Kahle for support with data analysis.A new design strategy is introduced to address a persistent weakness with resonance thermally activated delayed fluorescence (R-TADF) emitters to reduce aggregation-caused quenching effects, which we identify as one of the key limiting factors. The emitter Mes3DiKTa shows an improved photoluminescence quantum yield of 80% compared to 75% for the reference DiKTa in 3.5 wt% mCP. Importantly, emission from aggregates, even at high doping concentrations, is eliminated and aggregation-caused quenching is strongly curtailed. For both molecules, triplets are almost quantitatively upconverted into singlets in electroluminescence, despite a significant (~0.21 eV) singlet-triplet energy gap (ÎEST), in line with correlated quantum-chemical calculations, and a slow reverse intersystem crossing. We speculate that the lattice stiffness responsible for the narrow fluorescence and phosphorescence emission spectra also protects the triplets against non-radiative decay. An improved EQEmax of 21.1% for Mes3DIKTa compared to the parent DiKTa (14.7%) and, importantly, reduced efficiency roll- off compared to literature resonance TADF OLEDs, shows the promise of this design strategy for future design of R-TADF emitters for OLED applications.Publisher PDFPeer reviewe