309 research outputs found

    Tissue Plasminogen Activator Mediates Deleterious Complement Cascade Activation in Stroke

    Get PDF
    The use of intravenous tissue plasminogen activator (tPA) in the treatment of ischemic stroke is limited by its propensity to exacerbate brain edema and hemorrhage. The mechanisms underlying these deleterious effects of tPA remain incompletely understood. The purpose of this study was to delineate a pathway of tPA-mediated complement cascade activation in stroke and to determine whether complement inhibition ameliorates the adverse effects of post-ischemic tPA administration. We found that tPA promotes C3 cleavage both in vitro and in ischemic brain through a plasmin-mediated extrinsic pathway. Using cell culture models, we then showed that the C3a-receptor is strongly expressed on ischemic endothelium and that exogenous C3a dramatically enhances endothelial cell permeability. Next, we assessed the effect of tPA administration on brain edema and hemorrhage in a transient model of focal cerebral ischemia in C57BL/6 mice. We found that intravenous tPA exacerbates brain edema and hemorrhage in stroke, and that these effects are abrogated by a small-molecule antagonist of the C3a receptor. These findings establish for the first time that intravenous tPA dramatically upregulates complement cascade activation in ischemic brain and that pharmacologic complement inhibition protects against the adverse effects of tPA-mediated thrombolysis in stroke

    Complement Inhibition as a Proposed Neuroprotective Strategy following Cardiac Arrest

    Get PDF
    Out-of-hospital cardiac arrest (OHCA) is a devastating disease process with neurological injury accounting for a disproportionate amount of the morbidity and mortality following return of spontaneous circulation. A dearth of effective treatment strategies exists for global cerebral ischemia-reperfusion (GCI/R) injury following successful resuscitation from OHCA. Emerging preclinical as well as recent human clinical evidence suggests that activation of the complement cascade plays a critical role in the pathogenesis of GCI/R injury following OHCA. In addition, it is well established that complement inhibition improves outcome in both global and focal models of brain ischemia. Due to the profound impact of GCI/R injury following OHCA, and the relative lack of effective neuroprotective strategies for this pathologic process, complement inhibition provides an exciting opportunity to augment existing treatments to improve patient outcomes. To this end, this paper will explore the pathophysiology of complement-mediated GCI/R injury following OHCA

    Temporal pattern of C1q deposition after transient focal cerebral ischemia

    Full text link
    Recent studies have focused on elucidating the contribution of individual complement proteins to post-ischemic cellular injury. As the timing of complement activation and deposition after cerebral ischemia is not well understood, our study investigates the temporal pattern of C1q accumulation after experimental murine stroke. Brains were harvested from mice subjected to transient focal cerebral ischemia at 3, 6, 12, and 24 hr post reperfusion. Western blotting and light microscopy were employed to determine the temporal course of C1q protein accumulation and correlate this sequence with infarct evolution observed with TTC staining. Confocal microscopy was utilized to further characterize the cellular localization and characteristics of C1q deposition. Western Blot analysis showed that C1q protein begins to accumulate in the ischemic hemisphere between 3 and 6 hr post-ischemia. Light microscopy confirmed these findings, showing concurrent C1q protein staining of neurons. Confocal microscopy demonstrated co-localization of C1q protein with neuronal cell bodies as well as necrotic cellular debris. These experiments demonstrate the accumulation of C1q protein on neurons during the period of greatest infarct evolution. This data provides information regarding the optimal time window during which a potentially neuroprotective anti-C1q strategy is most likely to achieve therapeutic success. © 2006 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50651/1/20775_ftp.pd

    Complement Inhibition Promotes Endogenous Neurogenesis and Sustained Anti-Inflammatory Neuroprotection following Reperfused Stroke

    Get PDF
    The restoration of blood-flow following cerebral ischemia incites a series of deleterious cascades that exacerbate neuronal injury. Pharmacologic inhibition of the C3a-receptor ameliorates cerebral injury by attenuating post-ischemic inflammation. Recent reports also implicate C3a in the modulation of tissue repair, suggesting that complement may influence both injury and recovery at later post-ischemic time-points.To evaluate the effect of C3a-receptor antagonism on post-ischemic neurogenesis and neurological outcome in the subacute period of stroke, transient focal cerebral ischemia was induced in adult male C57BL/6 mice treated with multiple regimens of a C3a receptor antagonist (C3aRA).Low-dose C3aRA administration during the acute phase of stroke promotes neuroblast proliferation in the subventricular zone at 7 days. Additionally, the C3a receptor is expressed on T-lymphocytes within the ischemic territory at 7 days, and this cellular infiltrate is abrogated by C3aRA administration. Finally, C3aRA treatment confers robust histologic and functional neuroprotection at this delayed time-point.Targeted complement inhibition through low-dose antagonism of the C3a receptor promotes post-ischemic neuroblast proliferation in the SVZ. Furthermore, C3aRA administration suppresses T-lymphocyte infiltration and improves delayed functional and histologic outcome following reperfused stroke. Post-ischemic complement activation may be pharmacologically manipulated to yield an effective therapy for stroke

    Commentary on \u27Inflammatory changes in the aneurysm wall: a review\u27

    No full text

    Fasudil Slows Development of Cavernous Malformations

    No full text
    corecore