595 research outputs found

    Weakly regular Floquet Hamiltonians with pure point spectrum

    Full text link
    We study the Floquet Hamiltonian: -i omega d/dt + H + V(t) as depending on the parameter omega. We assume that the spectrum of H is discrete, {h_m (m = 1..infinity)}, with h_m of multiplicity M_m. and that V is an Hermitian operator, 2pi-periodic in t. Let J > 0 and set Omega_0 = [8J/9,9J/8]. Suppose that for some sigma > 0: sum_{m,n such that h_m > h_n} mu_{mn}(h_m - h_n)^(-sigma) < infinity where mu_{mn} = sqrt(min{M_m,M_n)) M_m M_n. We show that in that case there exist a suitable norm to measure the regularity of V, denoted epsilon, and positive constants, epsilon_* & delta_*, such that: if epsilon |Omega_0| - delta_* epsilon and the Floquet Hamiltonian has a pure point spectrum for all omega in Omega_infinity.Comment: 35 pages, Latex with AmsAr

    Is Poverty A Binding Constraint On Growth In Sub-Saharan Africa?

    Get PDF

    Tissue fusion over non-adhering surfaces

    Full text link
    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic non-adherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions

    On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum

    Full text link
    We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha, with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate |V(t)_{m,n}|0, p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and \epsilon is small enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where \sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was discussed earlier in the literature by Howland

    A constant of quantum motion in two dimensions in crossed magnetic and electric fields

    Full text link
    We consider the quantum dynamics of a single particle in the plane under the influence of a constant perpendicular magnetic and a crossed electric potential field. For a class of smooth and small potentials we construct a non-trivial invariant of motion. Do to so we proof that the Hamiltonian is unitarily equivalent to an effective Hamiltonian which commutes with the observable of kinetic energy.Comment: 18 pages, 2 figures; the title was changed and several typos corrected; to appear in J. Phys. A: Math. Theor. 43 (2010

    On the spectrum of a bent chain graph

    Full text link
    We study Schr\"odinger operators on an infinite quantum graph of a chain form which consists of identical rings connected at the touching points by ÎŽ\delta-couplings with a parameter α∈R\alpha\in\R. If the graph is "straight", i.e. periodic with respect to ring shifts, its Hamiltonian has a band spectrum with all the gaps open whenever α≠0\alpha\ne 0. We consider a "bending" deformation of the chain consisting of changing one position at a single ring and show that it gives rise to eigenvalues in the open spectral gaps. We analyze dependence of these eigenvalues on the coupling α\alpha and the "bending angle" as well as resonances of the system coming from the bending. We also discuss the behaviour of the eigenvalues and resonances at the edges of the spectral bands.Comment: LaTeX, 23 pages with 7 figures; minor changes, references added; to appear in J. Phys. A: Math. Theo

    Pulse-driven quantum dynamics beyond the impulsive regime

    Full text link
    We review various unitary time-dependent perturbation theories and compare them formally and numerically. We show that the Kolmogorov-Arnold-Moser technique performs better owing to both the superexponential character of correction terms and the possibility to optimize the accuracy of a given level of approximation which is explored in details here. As an illustration, we consider a two-level system driven by short pulses beyond the sudden limit.Comment: 15 pages, 5 color figure

    Scattering solutions in a network of thin fibers: small diameter asymptotics

    Full text link
    Small diameter asymptotics is obtained for scattering solutions in a network of thin fibers. The asymptotics is expressed in terms of solutions of related problems on the limiting quantum graph. We calculate the Lagrangian gluing conditions at vertices for the problems on the limiting graph. If the frequency of the incident wave is above the bottom of the absolutely continuous spectrum, the gluing conditions are formulated in terms of the scattering data for each individual junction of the network
    • 

    corecore