6 research outputs found

    Local Strain Heterogeneity Influences the Optoelectronic Properties of Halide Perovskites

    Get PDF
    Halide perovskites are promising semiconductors for optoelectronics, yet thin films show substantial microscale heterogeneity. Understanding the origins of these variations is essential for mitigating parasitic losses such as non-radiative decay. Here, we probe the structural and chemical origins of the heterogeneity by utilizing scanning X-ray diffraction beamlines at two different synchrotrons combined with high-resolution transmission electron microscopy to spatially characterize the crystallographic properties of individual micrometer-sized perovskite grains in high-quality films. We reveal new levels of heterogeneity on the ten-micrometer scale (super-grains) and even ten-nanometer scale (sub-grain domains). By directly correlating these properties with their corresponding local time-resolved photoluminescence properties, we find that regions showing the greatest luminescence losses correspond to strained regions, which arise from enhanced defect concentrations. Our work reveals remarkably complex heterogeneity across multiple length scales, shedding new light on the defect tolerance of perovskites

    Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide

    No full text
    In photovoltaic power ratings, a single solar spectrum, AM1.5, is the de facto standard for record laboratory efficiencies, commercial module specifications, and performance ratios of solar power plants. More detailed energy analysis that accounts for local spectral irradiance, along with temperature and broadband irradiance, reduces forecast errors to expand the grid utility of solar energy. Here, ground level measurements of spectral irradiance collected worldwide have been pooled to provide a sampling of geographic, seasonal, and diurnal variation. Applied to nine solar cell types, the resulting divergence in solar cell efficiencies illustrates that a single spectrum is insufficient for comparisons of cells with different spectral responses. Cells with two or more junctions tend to have efficiencies below that under the standard spectrum. Silicon exhibits the least spectral sensitivity relative weekly site variation ranges from 1 in Lima, Peru to 14 in Edmonton, Canad

    Recent publications relating to the Geography of Scotland 1995

    No full text

    Review of Particle Physics

    No full text
    This biennial review summarizes much of Particle Physics. Using data from previous editions, plus 1900 new measurements from 700 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. © 1996 The American Physical Society
    corecore