451 research outputs found

    Definite integrals and operational methods

    Full text link
    An operatorial method, already employed to formulate a generalization of the Ramanujan master theorem, is applied to the evaluation of integrals of various type. This technique provide a very flexible and powerful tool yielding new results encompassing various aspects of the special function theory.Comment: 9 pages; minor changes to match published versio

    A localized version of the basic triangle theorem

    No full text
    In this short note, we give a localized version of the basic triangle theorem, first published in 2011 (see [4]) in order to prove the independence of hyperlogarithms over various function fields. This version provides direct access to rings of scalars and avoids the recourse to fraction fields as that of meromorphic functions for instance

    Le support de l'algebre de lie libre

    Get PDF
    AbstractWe characterize the words appearing as monomials in Lie polynomials

    Combinatorial Physics, Normal Order and Model Feynman Graphs

    Full text link
    The general normal ordering problem for boson strings is a combinatorial problem. In this note we restrict ourselves to single-mode boson monomials. This problem leads to elegant generalisations of well-known combinatorial numbers, such as Bell and Stirling numbers. We explicitly give the generating functions for some classes of these numbers. Finally we show that a graphical representation of these combinatorial numbers leads to sets of model field theories, for which the graphs may be interpreted as Feynman diagrams corresponding to the bosons of the theory. The generating functions are the generators of the classes of Feynman diagrams.Comment: 9 pages, 4 figures. 12 references. Presented at the Symposium 'Symmetries in Science XIII', Bregenz, Austria, 200

    Renormalization group-like proof of the universality of the Tutte polynomial for matroids

    Get PDF
    In this paper we give a new proof of the universality of the Tutte polynomial for matroids. This proof uses appropriate characters of Hopf algebra of matroids, algebra introduced by Schmitt (1994). We show that these Hopf algebra characters are solutions of some differential equations which are of the same type as the differential equations used to describe the renormalization group flow in quantum field theory. This approach allows us to also prove, in a different way, a matroid Tutte polynomial convolution formula published by Kook, Reiner and Stanton (1999). This FPSAC contribution is an extended abstract.Comment: 12 pages, 3 figures, conference proceedings, 25th International Conference on Formal Power Series and Algebraic Combinatorics, Paris, France, June 201
    corecore