20 research outputs found

    Developmental disorders of vision

    Get PDF
    This review of developmental disorders of vision focuses on a few of the many disorders that disrupt visual development. Given the enormity of the human visual system in the primate brain and complexity of visual development, however, there are likely hundreds or thousands of potential types of disorders affecting high-level vision. The rapid progress seen in developmental dyslexia and Williams syndrome demonstrates the possibilities and difficulties inherent in researching such disorders, and the authors hope that similar progress will be made for congenital prosopagnosia and other disorders in the near future

    A visual processing advantage for young-adolescent deaf observers: Evidence from face and object matching tasks

    Get PDF
    It is unresolved whether the permanent auditory deprivation that deaf people experience leads to the enhanced visual processing of faces. The current study explored this question with a matching task in which observers searched for a target face among a concurrent lineup of ten faces. This was compared with a control task in which the same stimuli were presented upside down, to disrupt typical face processing, and an object matching task. A sample of young-adolescent deaf observers performed with higher accuracy than hearing controls across all of these tasks. These results clarify previous findings and provide evidence for a general visual processing advantage in deaf observers rather than a face-specific effect

    Early Left-Hemispheric Dysfunction of Face Processing in Congenital Prosopagnosia: An MEG Study

    Get PDF
    Electrophysiological research has demonstrated the relevance to face processing of a negative deflection peaking around 170 ms, labelled accordingly as N170 in the electroencephalogram (EEG) and M170 in magnetoencephalography (MEG). The M170 was shown to be sensitive to the inversion of faces and to familiarity-two factors that are assumed to be crucial for congenital prosopagnosia. In order to locate the cognitive dysfunction and its neural correlates, we investigated the time course of neural activity in response to these manipulations.Seven individuals with congenital prosopagnosia and seven matched controls participated in the experiment. To explore brain activity with high accuracy in time, we recorded evoked magnetic fields (275 channel whole head MEG) while participants were looking at faces differing in familiarity (famous vs. unknown) and orientation (upright vs. inverted). The underlying neural sources were estimated by means of the least square minimum-norm-estimation (L2-MNE) approach.The behavioural data corroborate earlier findings on impaired configural processing in congenital prosopagnosia. For the M170, the overall results replicated earlier findings, with larger occipito-temporal brain responses to inverted than upright faces, and more right- than left-hemispheric activity. Compared to controls, participants with congenital prosopagnosia displayed a general decrease in brain activity, primarily over left occipitotemporal areas. This attenuation did not interact with familiarity or orientation.The study substantiates the finding of an early involvement of the left hemisphere in symptoms of prosopagnosia. This might be related to an efficient and overused featural processing strategy which serves as a compensation of impaired configural processing

    Adults' Awareness of Faces Follows Newborns' Looking Preferences

    Get PDF
    From the first days of life, humans preferentially orient towards upright faces, likely reflecting innate subcortical mechanisms. Here, we show that binocular rivalry can reveal face detection mechanisms in adults that are surprisingly similar to inborn face detection mechanism. We used continuous flash suppression (CFS), a variant of binocular rivalry, to render stimuli invisible at the beginning of each trial and measured the time upright and inverted stimuli needed to overcome such interocular suppression. Critically, specific stimulus properties previously shown to modulate looking preferences in neonates similarly modulated adults' awareness of faces presented during CFS. First, the advantage of upright faces in overcoming CFS was strongly modulated by contrast polarity and direction of illumination. Second, schematic patterns consisting of three dark blobs were suppressed for shorter durations when the arrangement of these blobs respected the face-like configuration of the eyes and the mouth, and this effect was modulated by contrast polarity. No such effects were obtained in a binocular control experiment not involving CFS, suggesting a crucial role for face-sensitive mechanisms operating outside of conscious awareness. These findings indicate that visual awareness of faces in adults is governed by perceptual mechanisms that are sensitive to similar stimulus properties as those modulating newborns' face preferences
    corecore