68 research outputs found

    Wings of Change: aPKC/FoxP-dependent plasticity in steering motor neurons underlies operant self-learning in Drosophila [version 1; peer review: 1 approved, 2 approved with reservations]

    Get PDF
    Background Motor learning is central to human existence, such as learning to speak or walk, sports moves, or rehabilitation after injury. Evidence suggests that all forms of motor learning share an evolutionarily conserved molecular plasticity pathway. Here, we present novel insights into the neural processes underlying operant self-learning, a form of motor learning in the fruit fly Drosophila. Methods We operantly trained wild type and transgenic Drosophila fruit flies, tethered at the torque meter, in a motor learning task that required them to initiate and maintain turning maneuvers around their vertical body axis (yaw torque). We combined this behavioral experiment with transgenic peptide expression, CRISPR/Cas9-mediated, spatio-temporally controlled gene knock-out and confocal microscopy. Results We find that expression of atypical protein kinase C (aPKC) in direct wing steering motoneurons co-expressing the transcription factor FoxP is necessary for this type of motor learning and that aPKC likely acts via non-canonical pathways. We also found that it takes more than a week for CRISPR/Cas9-mediated knockout of FoxP in adult animals to impair motor learning, suggesting that adult FoxP expression is required for operant self-learning. Conclusions Our experiments suggest that, for operant self-learning, a type of motor learning in Drosophila, co-expression of atypical protein kinase C (aPKC) and the transcription factor FoxP is necessary in direct wing steering motoneurons. Some of these neurons control the wing beat amplitude when generating optomotor responses, and we have discovered modulation of optomotor behavior after operant self-learning. We also discovered that aPKC likely acts via non-canonical pathways and that FoxP expression is also required in adult flies

    Brain connectivity inversely scales with developmental temperature in Drosophila

    Get PDF
    Variability of synapse numbers and partners despite identical genes reveals the limits of genetic determinism. Here, we use developmental temperature as a non-genetic perturbation to study variability of brain wiring and behavior in Drosophila. Unexpectedly, slower development at lower temperatures increases axo-dendritic branching, synapse numbers, and non-canonical synaptic partnerships of various neurons, while maintaining robust ratios of canonical synapses. Using R7 photoreceptors as a model, we show that changing the relative availability of synaptic partners using a DIPγ mutant that ablates R7’s preferred partner leads to temperature-dependent recruitment of non-canonical partners to reach normal synapse numbers. Hence, R7 synaptic specificity is not absolute but based on the relative availability of postsynaptic partners and presynaptic control of synapse numbers. Behaviorally, movement precision is temperature robust, while movement activity is optimized for the developmentally encountered temperature. These findings suggest genetically encoded relative and scalable synapse formation to develop functional, but not identical, brains and behaviors

    A Systematic Nomenclature for the Drosophila Ventral Nervous System

    Get PDF
    Insect nervous systems are proven and powerful model systems for neuroscience research with wide relevance in biology and medicine. However, descriptions of insect brains have suffered from a lack of a complete and uniform nomenclature. Recognising this problem the Insect Brain Name Working Group produced the first agreed hierarchical nomenclature system for the adult insect brain, using Drosophila melanogaster as the reference framework, with other insect taxa considered to ensure greater consistency and expandability (Ito et al., 2014). Ito et al. (2014) purposely focused on the gnathal regions that account for approximately 50% of the adult CNS. We extend this nomenclature system to the sub-gnathal regions of the adult Drosophila nervous system to provide a nomenclature of the so-called ventral nervous system (VNS), which includes the thoracic and abdominal neuromeres that was not included in the original work and contains the neurons that play critical roles underpinning most fly behaviours

    A Systematic Nomenclature for the <i>Drosophila </i>Ventral Nerve Cord

    Get PDF
    The ventral nerve cord (VNC) of Drosophila is an important model system for understanding how nervous systems generate locomotion. In this issue of Neuron, Court et al. define the structures of the adult VNC to provide an anatomical framework for analyzing the functional organization of the VNC.Drosophila melanogaster is an established model for neuroscience research with relevance in biology and medicine. Until recently, research on the Drosophila brain was hindered by the lack of a complete and uniform nomenclature. Recognizing this, Ito et al. (2014) produced an authoritative nomenclature for the adult insect brain, using Drosophila as the reference. Here, we extend this nomenclature to the adult thoracic and abdominal neuromeres, the ventral nerve cord (VNC), to provide an anatomical description of this major component of the Drosophila nervous system. The VNC is the locus for the reception and integration of sensory information and involved in generating most of the locomotor actions that underlie fly behaviors. The aim is to create a nomenclature, definitions, and spatial boundaries for the Drosophila VNC that are consistent with other insects. The work establishes an anatomical framework that provides a powerful tool for analyzing the functional organization of the VNC

    Drosophila as a Model for MECP2 Gain of Function in Neurons

    Get PDF
    Methyl-CpG-binding protein 2 (MECP2) is a multi-functional regulator of gene expression. In humans loss of MECP2 function causes classic Rett syndrome, but gain of MECP2 function also causes mental retardation. Although mouse models provide valuable insight into Mecp2 gain and loss of function, the identification of MECP2 genetic targets and interactors remains time intensive and complicated. This study takes a step toward utilizing Drosophila as a model to identify genetic targets and cellular consequences of MECP2 gain-of function mutations in neurons, the principle cell type affected in patients with Rett-related mental retardation. We show that heterologous expression of human MECP2 in Drosophila motoneurons causes distinct defects in dendritic structure and motor behavior, as reported with MECP2 gain of function in humans and mice. Multiple lines of evidence suggest that these defects arise from specific MECP2 function. First, neurons with MECP2-induced dendrite loss show normal membrane currents. Second, dendritic phenotypes require an intact methyl-CpG-binding domain. Third, dendritic defects are amended by reducing the dose of the chromatin remodeling protein, osa, indicating that MECP2 may act via chromatin remodeling in Drosophila. MECP2-induced motoneuron dendritic defects cause specific motor behavior defects that are easy to score in genetic screening. In sum, our data show that some aspects of MECP2 function can be studied in the Drosophila model, thus expanding the repertoire of genetic reagents that can be used to unravel specific neural functions of MECP2. However, additional genes and signaling pathways identified through such approaches in Drosophila will require careful validation in the mouse model

    A Systematic Nomenclature for the Drosophila Ventral Nervous System

    Get PDF
    Insect nervous systems are proven and powerful model systems for neuroscience research with wide relevance in biology and medicine. However, descriptions of insect brains have suffered from a lack of a complete and uniform nomenclature. Recognising this problem the Insect Brain Name Working Group produced the first agreed hierarchical nomenclature system for the adult insect brain, using Drosophila melanogaster as the reference framework, with other insect taxa considered to ensure greater consistency and expandability (Ito et al., 2014). Ito et al. (2014) purposely focused on the gnathal regions that account for approximately 50% of the adult CNS. We extend this nomenclature system to the sub-gnathal regions of the adult Drosophila nervous system to provide a nomenclature of the so-called ventral nervous system (VNS), which includes the thoracic and abdominal neuromeres that was not included in the original work and contains the neurons that play critical roles underpinning most fly behaviours

    Hans-Joachim Pfluger: scientist, citizen, cosmopolitan OBITUARY

    No full text
    On January 25, 2022, Professor Hans-Joachim Pfluger passed away. Hans-Joachim Pfluger conducted research in the field of neuroethology, with a focus on the development, anatomy, and function of sensorimotor networks underlying insect locomotion. As founding member and one of the presidents of the German Neuroscience Society, Hans-Joachim Pfluger was a driving force behind the development of the Neurosciences in Germany and Europe. This obituary reflects on his curriculum vitae. It shall honor his scientific and professional achievements, and importantly, also his wonderful personality, which makes this loss so sad across the manifold levels of his life and his legacy, the family, the professional and the scientific community
    • …
    corecore