6 research outputs found

    The nuclear receptor FXR in enteroendocrine L cells : regulator of the response to short-chain fatty acids, gut microbiota-metabolites

    No full text
    Le contrôle de l’homéostasie du glucose est le résultat d’un dialogue étroit entre les différents organes métaboliques par l’intermédiaire de messages nerveux et hormonaux. Parmi les mécanismes de régulation, l’incrétine GLP-1 (Glucagon-Like Peptide-1), produite et sécrétée par les cellules entéroendocrines de type L dans l’intestin en réponse à la prise alimentaire, potentialise la sécrétion d’insuline par le pancréas. Au début de ma thèse, j’ai participé aux travaux de l’équipe qui ont permis de montrer que l’activation du récepteur nucléaire Farnesoid X Receptor (FXR) diminue la production et la sécrétion de GLP-1 en réponse au glucose. Cependant, comme il existe de nombreux autres stimuli de la sécrétion de GLP-1, nous avons ensuite cherché à savoir si FXR régule également d’autres voies de sécrétion de GLP-1. En particulier, le microbiote intestinal participe au contrôle de l'homéostasie énergétique par la fermentation des fibres alimentaires, produisant dans le colon des acides gras à chaîne courte (SCFAs) qui favorisent la sécrétion de GLP-1 en se liant à leurs récepteurs membranaires FFAR2 et FFAR3. L’objectif suivant de mes travaux de thèse a donc été d’étudier le rôle de FXR dans la réponse des cellules L du colon aux SCFAs.La sécrétion de GLP-1 en réponse aux SCFAs a été évaluée ex vivo dans des explants intestinaux de souris traitées avec le GW4064, agoniste synthétique de FXR, dans des colonoïdes murins issus de souris WT et FXR KO, in vitro dans les cellules L murines GLUTag et humaines NCI-H716 activées avec le GW4064 et in vivo chez des souris WT et FXR KO après supplémentation en prébiotiques(fructanes de type inuline) pour augmenter la production de SCFAs dans le colon. L’expression des récepteurs aux SCFA FFAR2 et FFAR3 a également été examinée dans ces différents modèles et la voie de signalisation intracellulaire de type Gαq de FFAR2 a été évaluée in vitro.La sécrétion de GLP-1 induite par les SCFAs est inhibée dans les explants de côlon de souris traitées par le GW4064 et améliorée dans les colonoïdes FXR KO. L’activation in vitro de FXR inhibela sécrétion de GLP-1 en réponse aux SCFAs et aux ligands synthétiques de FFAR2, principalement en diminuant l’expression de FFAR2 et sa signalisation intracellulaire de type Gαq. Les souris FXR KO présentent une augmentation de l’expression de FFAR2 dans le côlon et des taux plasmatiques de GLP-1 augmentés lors de la supplémentation en prébiotiques.L’ensemble de mes résultats de thèse montrent donc que l’inhibition de FXR augmente la sécrétion de GLP-1 par les cellules L entéroendocrines en réponse au glucose et aux métabolites du microbiote intestinal, les SCFAs. La combinaison de l’utilisation d’antagonistes ou de dé-activateurs de FXR dans l’intestin avec une supplémentation en prébiotiques peut ainsi être une approche thérapeutique prometteuse pour stimuler l’axe incrétine dans le traitement du diabète de type 2 et des maladies du foie gras non alcoolique telles que la NASH (Non Alcoholic SteatoHepatitis).The control of glucose homeostasis is the result of a close dialogue between the different metabolic organs through nervous and hormonal messages. Among the regulatory mechanisms, the incretin GLP-1 (Glucagon-Like Peptide-1), produced and secreted by enteroendocrine L cells in the intestine in response to food intake, enhances insulin secretion by the pancreas. At the beginning of mythesis, we have shown first that activation of the nuclear Farnesoid X Receptor (FXR) decreases theproduction and the secretion of GLP-1 in response to glucose. However, there are many other stimuli ofGLP-1 secretion. In particular, the intestinal microbiota participates in the control of energy homeostasisby fermentation of dietary fibers, producing short chain fatty acids (SCFAs) in the colon which promotethe secretion of the incretin GLP-1 by binding to their transmembrane receptors FFAR2 and FFAR3 inenteroendocrine L cells. We therefore investigated whether FXR could also regulate other GLP-1secretion pathways in L cell and the aim of my thesis work was then to study the role of FXR in colonicL cell response to SCFAs.GLP-1 secretion in response to SCFAs was evaluated ex vivo in intestinal biopsies from micetreated with GW4064, a synthetic agonist of FXR, in murine colonoids from WT and FXR KO mice, invitro in murine L cells GLUTag and human L cells NCI-H716 activated with GW4064 and in vivo inWT and FXR KO mice after supplementation with prebiotics (inulin type fructans) to increase SCFAsproduction in the colon. Expression of the SCFAs receptors FFAR2 and FFAR3 were also examined inthese different models and FFAR2 Gαq-signalling pathway was evaluated in vitro.SCFA-induced GLP-1 secretion is blunted in colon explants from mice treated with GW4064 and improved in FXR KO colonoids. In vitro activation of FXR inhibits GLP-1 secretion in response toSCFAs and synthetic ligands of FFAR2, mainly by decreasing FFAR2 expression and FFAR2 Gαqsignallingpathway. FXR KO mice exhibit an increased FFAR2 expression in colon and increased plasma GLP-1 levels after prebiotic supplementation.Overall my thesis results show that FXR inhibition increases GLP-1 secretion byenteroendocrine L cells in response to glucose and to gut microbiota-metabolites, the SCFAs. Thecombination of FXR antagonists with prebiotic supplementation can thus be a promising therapeuticapproach to stimulate the incretin axis in the treatment of type 2 diabetes and non-alcoholic fatty liverdiseases such as NASH (Non-Alcoholic SteatoHepatitis)

    Farnesoid X Receptor Activation in Brain Alters Brown Adipose Tissue Function via the Sympathetic System

    No full text
    International audienceThe nuclear bile acid (BA) receptor farnesoid X receptor (FXR) is a major regulator of metabolic/energy homeostasis in peripheral organs. Indeed, enterohepatic-expressed FXR controls metabolic processes (BA, glucose and lipid metabolism, fat mass, body weight). The central nervous system (CNS) regulates energy homeostasis in close interaction with peripheral organs. While FXR has been reported to be expressed in the brain, its function has not been studied so far. We studied the role of FXR in brain control of energy homeostasis by treating wild-type and FXR-deficient mice by intracerebroventricular (ICV) injection with the reference FXR agonist GW4064. Here we show that pharmacological activation of brain FXR modifies energy homeostasis by affecting brown adipose tissue (BAT) function. Brain FXR activation decreases the rate-limiting enzyme in catecholamine synthesis, tyrosine hydroxylase (TH), and consequently the sympathetic tone. FXR activation acts by inhibiting hypothalamic PKA-CREB induction of TH expression. These findings identify a function of brain FXR in the control of energy homeostasis and shed new light on the complex control of energy homeostasis by BA through FXR

    The nuclear receptor FXR inhibits Glucagon-Like Peptide-1 secretion in response to microbiota-derived Short-Chain Fatty Acids.

    No full text
    The gut microbiota participates in the control of energy homeostasis partly through fermentation of dietary fibers hence producing short-chain fatty acids (SCFAs), which in turn promote the secretion of the incretin Glucagon-Like Peptide-1 (GLP-1) by binding to the SCFA receptors FFAR2 and FFAR3 on enteroendocrine L-cells. We have previously shown that activation of the nuclear Farnesoid X Receptor (FXR) decreases the L-cell response to glucose. Here, we investigated whether FXR also regulates the SCFA-induced GLP-1 secretion. GLP-1 secretion in response to SCFAs was evaluated ex vivo in murine colonic biopsies and in colonoids of wild-type (WT) and FXR knock-out (KO) mice, in vitro in GLUTag and NCI-H716 L-cells activated with the synthetic FXR agonist GW4064 and in vivo in WT and FXR KO mice after prebiotic supplementation. SCFA-induced GLP-1 secretion was blunted in colonic biopsies from GW4064-treated mice and enhanced in FXR KO colonoids. In vitro FXR activation inhibited GLP-1 secretion in response to SCFAs and FFAR2 synthetic ligands, mainly by decreasing FFAR2 expression and downstream Gαq-signaling. FXR KO mice displayed elevated colonic FFAR2 mRNA levels and increased plasma GLP-1 levels upon local supply of SCFAs with prebiotic supplementation. Our results demonstrate that FXR activation decreases L-cell GLP-1 secretion in response to inulin-derived SCFA by reducing FFAR2 expression and signaling. Inactivation of intestinal FXR using bile acid sequestrants or synthetic antagonists in combination with prebiotic supplementation may be a promising therapeutic approach to boost the incretin axis in type 2 diabetes

    Ffar2 expression regulates leukaemic cell growth in vivo.

    No full text
    BACKGROUND: Activation of free fatty acid receptor 2 (FFAR2) by microbiota-derived metabolites (e.g., propionate) reduces leukaemic cell proliferation in vitro. This study aims to test whether Ffar2 expression per se also influences leukaemia cell growth in vivo. METHODS: Bcr-Abl-expressing BaF cells were used as a leukaemia model and the role of Ffar2 was evaluated in Balb/c mice after lentiviral shRNA transduction. RESULTS: Our data formally establish that reduced leukaemic cell proliferation is associated with increased Ffar2 expression in vivo and in vitro. Going beyond association, we point out that decreasing Ffar2 expression fosters cancer cell growth in vitro and in vivo. CONCLUSIONS: Our data demonstrate the role of Ffar2 in the control of leukaemic cell proliferation in vivo and indicate that a modulation of Ffar2 expression through nutritional tools or pharmacological agents may constitute an attractive therapeutic approach to tackle leukaemia progression in humans

    Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells.

    Get PDF
    Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes
    corecore