1,184 research outputs found

    Kinematical Limits on Higgs Boson Production via Gluon Fusion in Association with Jets

    Get PDF
    In this paper, we analyze the high-energy limits for Higgs boson plus two jet production. We consider two high-energy limits, corresponding to two different kinematic regions: a) the Higgs boson is centrally located in rapidity between the two jets, and very far from either jet; b) the Higgs boson is close to one jet in rapidity, and both of these are very far from the other jet. In both cases the amplitudes factorize into impact factors or coefficient functions connected by gluons exchanged in the t channel. Accordingly, we compute the coefficient function for the production of a Higgs boson from two off-shell gluons, and the impact factors for the production of a Higgs boson in association with a gluon or a quark jet. We include the full top quark mass dependence and compare this with the result obtained in the large top-mass limit.Comment: 35 pages, 6 figure

    Editorial: Regulation of Pollen Tube Growth

    Get PDF
    In angiosperms, the pollen tube is a simple system composed of the vegetative cell and the two sperm cells which, nevertheless, accomplishes a very important process, essential for the life of flowering plants on Earth, i.e., sexual reproduction. In its simplicity, the pollen tube allowed plants to reproduce on land, even in the absence of water. Therefore, it is a very critical evolutionary factor. In the last 30 years, the pollen tube has been the object of study for many researchers around the world because of a number of reasons; apart from its biological importance, the pollen tube is a highly valuable cell model by which to analyze many aspects of plant cell biology (except for photosynthesis). The time course of cell wall deposition, the role of calcium ions in driving the apical growth of pollen tube, the action of signal transduction intermediates, the cell-cell communication, the mechanism of cell shape control by exocytosis/endocytosis are just some of the aspects on which it is possible to find articles in the scientific literature dealing with the pollen tube. Not to forget that the study of pollen tubes also has practical implications because the control of the reproductive process of plants also involves the study of genes, proteins and metabolites that promote or prevent the growth of pollen tubes. Therefore, controlling pollen tube growth can impact seed and fruit yields. Due to all these considerations, the Research Topic “Regulation of pollen tube growth” was meant to highlight some of the above aspects with updated considerations and special focus. These include contributions related to human health, pollen-pistil interaction, the growth of pollen tubes by exocytosis/endocytosis, and the rejection of the pollen tube in self-incompatibility processe

    Higgs boson production with one bottom quark jet at hadron colliders

    Full text link
    We present total rates and kinematic distributions for the associated production of a single bottom quark and a Higgs boson at the Tevatron and the LHC. We include next-to-leading order QCD corrections and compare the results obtained in the four and five flavor number schemes for parton distribution functions.Comment: 4 pages, 8 figures, RevTeX

    Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes

    Full text link
    We show how the Hopf algebra structure of multiple polylogarithms can be used to simplify complicated expressions for multi-loop amplitudes in perturbative quantum field theory and we argue that, unlike the recently popularized symbol-based approach, the coproduct incorporates information about the zeta values. We illustrate our approach by rewriting the two-loop helicity amplitudes for a Higgs boson plus three gluons in a simplified and compact form involving only classical polylogarithms.Comment: 46 page

    NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM

    Get PDF
    We present a next-to-leading order calculation of Higgs boson production plus one and two jets via gluon fusion interfaced to shower Monte Carlo programs, implemented according to the POWHEG method. For this implementation we have used a new interface of the POWHEG BOX with MadGraph4, that generates the codes for generic Born and real processes automatically. The virtual corrections have been taken from the MCFM code. We carry out a simple phenomenological study of our generators, comparing them among each other and with fixed next-to-leading order results.Comment: 27 pages, 21 figure

    The role of gene elongation in the evolution of histidine biosynthetic genes

    Get PDF
    Gene elongation is a molecular mechanism consisting of an in-tandem duplication of a gene and divergence and fusion of the two copies, resulting in a gene constituted by two divergent paralogous modules. The aim of this work was to evaluate the importance of gene elongation in the evolution of histidine biosynthetic genes and to propose a possible evolutionary model for some of them. Concerning the genes hisA and hisF, which code for two homologous (β/α)8-barrels, it has been proposed that the two extant genes could be the result of a cascade of gene elongation/domain shuffling events starting from an ancestor gene coding for just one (β/α) module. A gene elongation event has also been proposed for the evolution of hisB and hisD; structural analyses revealed the possibility of an early elongation event, resulting in the repetition of modules. Furthermore, it is quite possible that the gene elongations responsible for the evolution of the four proteins occurred before the earliest phylogenetic divergence. In conclusion, gene elongation events seem to have played a crucial role in the evolution of the histidine biosynthetic pathway, and they may have shaped the structures of many genes during the first steps of their evolution

    Rapidity-Separation Dependence and the Large Next-to-Leading Corrections to the BFKL Equation

    Get PDF
    Recent concerns about the very large next-to-leading logarithmic (NLL) corrections to the BFKL equation are addressed by the introduction of a physical rapidity-separation parameter Δ\Delta. At the leading logarithm (LL) this parameter enforces the constraint that successive emitted gluons have a minimum separation in rapidity, yi+1yi>Δy_{i+1}-y_i>\Delta. The most significant effect is to reduce the BFKL Pomeron intercept from the standard result as Δ\Delta is increased from 0 (standard BFKL). At NLL this Δ\Delta-dependence is compensated by a modification of the BFKL kernel, such that the total dependence on Δ\Delta is formally next-to-next-to-leading logarithmic. In this formulation, as long as Δ2.2\Delta\gtrsim2.2 (for αs=0.15\alpha_{s}=0.15): (i) the NLL BFKL pomeron intercept is stable with respect to variations of Δ\Delta, and (ii) the NLL correction is small compared to the LL result. Implications for the applicability of the BFKL resummation to phenomenology are considered.Comment: 16 pages, 3 figures, Late

    Monte Carlo studies of the jet activity in Higgs + 2 jet events

    Get PDF
    Tree-level studies have shown in the past that kinematical correlations between the two jets in Higgs+2-jet events are direct probes of the Higgs couplings, e.g. of their CP nature. In this paper we explore the impact of higher-order corrections on the azimuthal angle correlation of the two leading jets and on the rapidity distribution of extra jets. Our study includes matrix-element and shower MC effects, for the two leading sources of Higgs plus two jet events at the CERN LHC, namely vector-boson and gluon fusion. We show that the discriminating features present in the previous leading-order matrix element studies survive.Comment: 12 pages, 10 figures. Version to appear on JHEP. Figs. 5-8 replaced with colour version
    corecore