45 research outputs found
Planet Four: Terrains - Discovery of Araneiforms Outside of the South Polar Layered Deposits
We present the results of a systematic mapping of seasonally sculpted
terrains on the South Polar region of Mars with the Planet Four: Terrains (P4T)
online citizen science project. P4T enlists members of the general public to
visually identify features in the publicly released Mars Reconnaissance Orbiter
CTX images. In particular, P4T volunteers are asked to identify: 1) araneiforms
(including features with a central pit and radiating channels known as
'spiders'); 2) erosional depressions, troughs, mesas, ridges, and
quasi-circular pits characteristic of the South Polar Residual Cap (SPRC) which
we collectively refer to as 'Swiss cheese terrain', and 3) craters. In this
work we present the distributions of our high confidence classic spider
araneiforms and Swiss cheese terrain identifications. We find no locations
within our high confidence spider sample that also have confident Swiss cheese
terrain identifications. Previously spiders were reported as being confined to
the South Polar Layered Deposits (SPLD). Our work has provided the first
identification of spiders at locations outside of the SPLD, confirmed with high
resolution HiRISE imaging. We find araneiforms on the Amazonian and Hesperian
polar units and the Early Noachian highland units, with 75% of the identified
araneiform locations in our high confidence sample residing on the SPLD. With
our current coverage, we cannot confirm whether these are the only geologic
units conducive to araneiform formation on the Martian South Polar region. Our
results are consistent with the current CO2 jet formation scenario with the
process exploiting weaknesses in the surface below the seasonal CO2 ice sheet
to carve araneiform channels into the regolith over many seasons. These new
regions serve as additional probes of the conditions required for channel
creation in the CO2 jet process. (Abridged)Comment: accepted to Icarus - Supplemental data files are available at
https://www.zooniverse.org/projects/mschwamb/planet-four-terrains/about/results
- Icarus print version available at
http://www.sciencedirect.com/science/article/pii/S001910351730055
BFKL at Next-to-Next-to-Leading Order
We determine an approximate expression for the O(alpha_s^3) contribution
chi_2 to the kernel of the BFKL equation, which includes all collinear and
anticollinear singular contributions. This is derived using recent results on
the relation between the GLAP and BFKL kernels (including running-coupling
effects to all orders) and on small-x factorization schemes. We present the
result in various schemes, relevant both for applications to the BFKL equation
and to small-x evolution of parton distributions.Comment: 34 pages, 6 figures, TeX with harvmac. Various small typos corrects,
in particular first term in eq D.3. Final version to be published in Nucl.
Phys.
Finite-top-mass effects in NNLO Higgs production
We construct an accurate approximation to the exact NNLO cross section for
Higgs production in gluon-gluon fusion by matching the dominant finite top mass
corrections recently computed by us to the known result in the infinite mass
limit. The ensuing corrections to the partonic cross section are very large
when the center of mass energy of the partonic collision is much larger than
the Higgs mass, but lead to a moderate correction at the percent level to the
total Higgs production cross section at the LHC. Our computation thus reduces
the uncertainty related to these corrections at the LHC from the percent to the
per mille level.Comment: 4 pages, 4 figures; to be published in the proceedings of QCD2008.
Reference adde
Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order
We present a computation of the cross section for inclusive Higgs production
in gluon-gluon fusion for finite values of the top mass in perturbative QCD to
all orders in the limit of high partonic center-of-mass energy. We show that at
NLO the high energy contribution accounts for most of the difference between
the result found with finite top mass and that obtained in the limit of
infinite top mass. We use our result to improve the known NNLO order result
obtained with infinite top mass. We estimate the effect of the high energy NNLO
top mass dependence on the K factor to be of the order of a few per cent.Comment: 20 pages, 5 figures, latex with epsfi
Jet vetoing at the LHC
We study the effect of a veto on additional jets in the rapidity region
between a pair of high transverse momentum jets at the LHC. We aim to sum the
most important logarithms in the ratio of the jet transverse momentum to the
veto scale and to that end we attempt to assess the significance of the
super-leading logarithms that appear at high orders in the perturbative
expansion. We also compare our results to those of HERWIG++, in an attempt to
ascertain the accuracy of the angular ordered parton shower. We find that there
are large corrections that arise for large enough jet transverse momenta as a
consequence of Coulomb gluon exchanges.Comment: 25 page
Parton distributions with small-x resummation:evidence for BFKL dynamics in HERA data
We present a determination of the parton distribution functions of the proton
in which NLO and NNLO fixed-order calculations are supplemented by NLLx small-x
resummation. Deep inelastic structure functions are computed consistently at
NLO+NLLx or NNLO+NLLx, while for hadronic processes small-x resummation is
included only in the PDF evolution, with kinematic cuts introduced to ensure
the fitted data lie in a region where the fixed-order calculation of the hard
cross-sections is reliable. In all other respects, the fits use the same
methodology and are based on the same global dataset as the recent NNPDF3.1
analysis. We demonstrate that the inclusion of small-x resummation leads to a
quantitative improvement in the perturbative description of the HERA inclusive
and charm-production reduced cross-sections in the small x region. The impact
of the resummation in our fits is greater at NNLO than at NLO, because
fixed-order calculations have a perturbative instability at small x due to
large logarithms that can be cured by resummation. We explore the
phenomenological implications of PDF sets with small-x resummation for the
longitudinal structure function at HERA, for parton luminosities and LHC
benchmark cross-sections, for ultra-high energy neutrino-nucleus
cross-sections, and for future high-energy lepton-proton colliders such as the
LHeC.Comment: 70 pages, many figures. Discussion on uncertainties due to subleading
logarithmic contributions. Discussion on fits with pseudodata from future
high-energy lepton-proton colliders. Updated references. Version to be
published in EPJ
Immunogenicity and reactogenicity of modified vaccinia Ankara pre-exposure vaccination against mpox according to previous smallpox vaccine exposure and HIV infection. Prospective cohort study
Background: Pre-exposure vaccination with MVA-BN has been widely used against mpox to contain the 2022 outbreak. Many countries have defined prioritized strategies, administering a single dose to those historically vaccinated for smallpox, to achieve quickly adequate coverage in front of low supplies. Using epidemiological models, real-life effectiveness was estimated at approximately 36%-86%, but no clinical trials were performed. Few data on MVA-BN immunogenicity are currently available, and there are no established correlates of protection. Immunological response in PLWH in the context of the 2022 outbreak was also poorly described. Methods: Blood samples were collected from participants eligible for pre-exposure MVA-BN vaccination before (T1) receiving a full course of vaccine (single-dose for vaccine-experienced or smallpox-primed and two-dose for smallpox vaccine-naïve or smallpox non-primed) and one month after the last dose (T2 and T3, respectively). MPXV-specific IgGs were measured by in-house immunofluorescence assay, using 1:20 as screening dilution, MPXV-specific nAbs by 50% plaque reduction neutralization test (PRNT50, starting dilution 1:10), and IFN-γ-producing specific T cells to MVA-BN vaccine, by ELISpot assay. Paired or unpaired t-test and Wilcoxon or Mann-Whitney test were used to analyse IgG and nAbs, and T-cell response, as appropriate. The probability of IgG and nAb response in vaccine-experienced vs. vaccine-naïve was estimated in participants not reactive at T1. The McNemar test was used to evaluate vaccination's effect on humoral response both overall and by smallpox vaccination history. In participants who were not reactive at T1, the proportion of becoming responders one month after full-cycle completion by exposure groups was compared by logistic regression and then analysed by HIV status strata (interaction test). The response was also examined in continuous, and the Average Treatment Effect (ATE) of the difference from baseline to schedule completion according to previous smallpox vaccination was estimated after weighting for HIV using a linear regression model. Self-reports of adverse effects following immunization (AEFIs) were prospectively collected after the first MVA-BN dose (T1). Systemic (S-AEFIs: fatigue, myalgia, headache, GI effects, chills) and local (L-AEFIs: redness, swelling, pain) AEFIs were graded as absent (grade 0), mild (1), moderate (2), or severe (3). The maximum level of severity for S-AEFIs and L-AEFIs ever experienced over the 30 days post-dose by vaccination exposure groups were analysed using a univariable multinomial logistic regression model and after adjusting for HIV status; for each of the symptoms, we also compared the mean duration by exposure group using an unpaired t-test. Findings: Among the 164 participants included, 90 (54.8%) were smallpox vaccine-experienced. Median age was 49 years (IQR 41-55). Among the 76 (46%) PLWH, 76% had a CD4 count >500 cells/μL. There was evidence that both the IgG and nAbs titers increased after administration of the MVA-BN vaccine. However, there was no evidence for a difference in the potential mean change in humoral response from baseline to the completion of a full cycle when comparing primed vs. non-primed participants. Similarly, there was no evidence for a difference in the seroconversion rate after full cycle vaccination in the subset of participants not reactive for nAbs at T1 (p = 1.00 by Fisher's exact test). In this same analysis and for the nAbs outcome, there was some evidence of negative effect modification by HIV (interaction p-value = 0.17) as primed people living with HIV (PLWH) showed a lower probability of seroconversion vs. non-primed, and the opposite was seen in PLWoH. When evaluating the response in continuous, we observed an increase in T-cell response after MVA-BN vaccination in both primed and non-primed. There was evidence for a larger increase when using the 2-dose vs. one-dose strategy with a mean difference of -2.01 log2 (p ≤ 0.0001), after controlling for HIV. No evidence for a difference in the risk of developing any AEFIs of any grade were observed by exposure group, except for the lower risk of grade 2 (moderate) fatigue, induration and local pain which was lower in primed vs. non-primed [OR 0.26 (0.08-0.92), p = 0.037; OR 0.30 (0.10-0.88), p = 0.029 and OR 0.19 (0.05-0.73), p = 0.015, respectively]. No evidence for a difference in symptom duration was also detected between the groups. Interpretation: The evaluation of the humoral and cellular response one month after the completion of the vaccination cycle suggested that MVA-BN is immunogenic and that the administration of a two-dose schedule is preferable regardless of the previous smallpox vaccination history, especially in PLWH, to maximize nAbs response. MVA-BN was safe as well tolerated, with grade 2 reactogenicity higher after the first administration in vaccine-naïve than in vaccine-experienced individuals, but with no evidence for a difference in the duration of these adverse effects. Further studies are needed to evaluate the long-term duration of immunity and to establish specific correlates of protection. Funding: The study was supported by the National Institute for Infectious Disease Lazzaro Spallanzani IRCCS "Advanced grant 5 × 1000, 2021" and by the Italian Ministry of Health "Ricerca Corrente Linea 2"
Immunogenicity and reactogenicity of modified vaccinia Ankara pre-exposure vaccination against mpox according to previous smallpox vaccine exposure and HIV infection: prospective cohort study
BACKGROUND: Pre-exposure vaccination with MVA-BN has been widely used against mpox to contain the 2022 outbreak. Many countries have defined prioritized strategies, administering a single dose to those historically vaccinated for smallpox, to achieve quickly adequate coverage in front of low supplies. Using epidemiological models, real-life effectiveness was estimated at approximately 36%–86%, but no clinical trials were performed. Few data on MVA-BN immunogenicity are currently available, and there are no established correlates of protection. Immunological response in PLWH in the context of the 2022 outbreak was also poorly described. METHODS: Blood samples were collected from participants eligible for pre-exposure MVA-BN vaccination before (T1) receiving a full course of vaccine (single-dose for vaccine-experienced or smallpox-primed and two-dose for smallpox vaccine-naïve or smallpox non-primed) and one month after the last dose (T2 and T3, respectively). MPXV-specific IgGs were measured by in-house immunofluorescence assay, using 1:20 as screening dilution, MPXV-specific nAbs by 50% plaque reduction neutralization test (PRNT50, starting dilution 1:10), and IFN-γ-producing specific T cells to MVA-BN vaccine, by ELISpot assay. Paired or unpaired t-test and Wilcoxon or Mann–Whitney test were used to analyse IgG and nAbs, and T-cell response, as appropriate. The probability of IgG and nAb response in vaccine-experienced vs. vaccine-naïve was estimated in participants not reactive at T1. The McNemar test was used to evaluate vaccination's effect on humoral response both overall and by smallpox vaccination history. In participants who were not reactive at T1, the proportion of becoming responders one month after full-cycle completion by exposure groups was compared by logistic regression and then analysed by HIV status strata (interaction test). The response was also examined in continuous, and the Average Treatment Effect (ATE) of the difference from baseline to schedule completion according to previous smallpox vaccination was estimated after weighting for HIV using a linear regression model. Self-reports of adverse effects following immunization (AEFIs) were prospectively collected after the first MVA-BN dose (T1). Systemic (S-AEFIs: fatigue, myalgia, headache, GI effects, chills) and local (L-AEFIs: redness, swelling, pain) AEFIs were graded as absent (grade 0), mild (1), moderate (2), or severe (3). The maximum level of severity for S-AEFIs and L-AEFIs ever experienced over the 30 days post-dose by vaccination exposure groups were analysed using a univariable multinomial logistic regression model and after adjusting for HIV status; for each of the symptoms, we also compared the mean duration by exposure group using an unpaired t-test. FINDING: Among the 164 participants included, 90 (54.8%) were smallpox vaccine-experienced. Median age was 49 years (IQR 41–55). Among the 76 (46%) PLWH, 76% had a CD4 count >500 cells/μL. There was evidence that both the IgG and nAbs titers increased after administration of the MVA-BN vaccine. However, there was no evidence for a difference in the potential mean change in humoral response from baseline to the completion of a full cycle when comparing primed vs. non-primed participants. Similarly, there was no evidence for a difference in the seroconversion rate after full cycle vaccination in the subset of participants not reactive for nAbs at T1 (p = 1.00 by Fisher's exact test). In this same analysis and for the nAbs outcome, there was some evidence of negative effect modification by HIV (interaction p-value = 0.17) as primed people living with HIV (PLWH) showed a lower probability of seroconversion vs. non-primed, and the opposite was seen in PLWoH. When evaluating the response in continuous, we observed an increase in T-cell response after MVA-BN vaccination in both primed and non-primed. There was evidence for a larger increase when using the 2-dose vs. one-dose strategy with a mean difference of −2.01 log2 (p ≤ 0.0001), after controlling for HIV. No evidence for a difference in the risk of developing any AEFIs of any grade were observed by exposure group, except for the lower risk of grade 2 (moderate) fatigue, induration and local pain which was lower in primed vs. non-primed [OR 0.26 (0.08–0.92), p = 0.037; OR 0.30 (0.10–0.88), p = 0.029 and OR 0.19 (0.05–0.73), p = 0.015, respectively]. No evidence for a difference in symptom duration was also detected between the groups. INTERPRETATION: The evaluation of the humoral and cellular response one month after the completion of the vaccination cycle suggested that MVA-BN is immunogenic and that the administration of a two-dose schedule is preferable regardless of the previous smallpox vaccination history, especially in PLWH, to maximize nAbs response. MVA-BN was safe as well tolerated, with grade 2 reactogenicity higher after the first administration in vaccine-naïve than in vaccine-experienced individuals, but with no evidence for a difference in the duration of these adverse effects. Further studies are needed to evaluate the long-term duration of immunity and to establish specific correlates of protection