11 research outputs found

    Numerical analysis of subsoil-reinforced concrete slab interaction

    Get PDF
    This article presents the numerical modeling of interaction between a reinforced concrete slab and subsoil using ABAQUS. Subsoil was simulated as both homogeneous half-space and inhomogeneous half-space. Reinforcement bars in the concrete slab were accurately modelled allowing capturing a precise deformation profile of the slab in interaction with subsoil. Input data for numerical analysis were adopted from a published work. Results of the study were verified on the basis of comparison with those of the previous study

    PERSISTENT ORGANOCHLORINE RESIDUES AND THEIR BIOACCUMULATION PROFILES IN RESIDENT AND MIGRATORY BIRDS FROM NORTH VIETNAM

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    PERSISTENT ORGANIC POLLUTANTS(POPs) IN VIETNAMESE ENVIRONMENT-A REVIEW OF CONTAMINATION, FATE AND TOXIC POTENTIAL

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    Estimating PM10 Concentration from Drilling Operations in Open-Pit Mines Using an Assembly of SVR and PSO

    No full text
    Dust is one of the components causing heavy environmental pollution in open-pit mines, especially PM10. Some pathologies related to the lung, respiratory system, and occupational diseases have been identified due to the effects of PM10 in open-pit mines. Therefore, the prediction and control of PM10 concentration in the production process are necessary for environmental and health protection. In this study, PM10 concentration from drilling operations in the Coc Sau open-pit coal mine (Vietnam) was investigated and considered through a database including 245 datasets collected. A novel hybrid artificial intelligence model was developed based on support vector regression (SVR) and a swarm optimization algorithm (i.e., particle swarm optimization (PSO)), namely PSO-SVR, for estimating PM10 concentration from drilling operations at the mine. Polynomial (P), radial basis function (RBF), and linear (L) kernel functions were considered and applied to the development of the PSO-SVR models in the present study, abbreviated as PSO-SVR-P, PSO-SVR-RBF, and PSO-SVR-L. Also, three benchmark artificial intelligence techniques, such as k-nearest neighbors (KNN), random forest (RF), and classification and regression trees (CART), were applied and developed for estimating PM10 concentration and then compared with the PSO-SVR models. Root-mean-squared error (RMSE) and determination coefficient (R2) were used as the statistical criteria for evaluating the performance of the developed models. The results exhibited that the PSO algorithm had an essential role in the optimization of the hyper-parameters of the SVR models. The PSO-SVR models (i.e., PSO-SVR-L, PSO-SVR-P, and PSO-SVR-RBF) had higher performance levels than the other models (i.e., RF, CART, and KNN) with an RMSE of 0.040, 0.042, and 0.043; and R2 of 0.954, 0.948, and 0.946; for the PSO-SVR-L, PSO-SVR-P, and PSO-SVR-RBF models, respectively. Of these PSO-SVR models, the PSO-SVR-L model was the most dominant model with an RMSE of 0.040 and R2 of 0.954. The remaining three benchmark models (i.e., RF, CART, and KNN) yielded a more unsatisfactory performance with an RMSE of 0.060, 0.052, and 0.067; and R2 of 0.894, 0.924, and 0.867, for the RF, CART, and KNN models, respectively. Furthermore, the findings of this study demonstrated that the density of rock mass, moisture content, and the penetration rate of the drill were essential parameters on the PM10 concentration caused by drilling operations in open-pit mines

    Wykorzystanie bezzałogowych statków powietrznych (dronów) do monitorowania jakości powietrza w odkrywkowych kopalniach węgla kamiennego

    No full text
    Recently remarkable advancement development of unmanned aerial vehicles (UAVs) has been observed and their applications have been shown in many fields such as agriculture, industry, and environmental management. However, in the mining industry, the application of UAV technology remains potential. This paper presents a low-cost unmanned aerial vehicle technology-based system for 3D mapping and air quality monitoring at open-pit mine sites in Vietnam. The system includes several dust sensors that are mounted on a low-cost rotary-wing type UAV. The system collects a variety of data, mainly images and airborne pollutant concentrations. To evaluate the performance of the proposed system, field tests were carried out at the Coc Sau coal mine. Based on the images transmitted to the ground monitoring station, large scale 3D topographic maps were successfully modeled. In addition, sensors mounted on the UAV system were able to monitor the levels of environmental variables associated with the air quality within the pit such as temperature, dust, CO, CO2, and NOx. The field test results in this study illustrate the applicability of the low-cost UAV for the 3D mapping and the air quality monitoring at large and deep coal pits with relatively high accuracy

    Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit

    No full text
    corecore