1,225 research outputs found

    Magnetic properties of Gd_xY_{1-x}Fe_2Zn_{20}: dilute, large, S\textbf {S} moments in a nearly ferromagnetic Fermi liquid

    Full text link
    Single crystals of the dilute, rare earth bearing, pseudo-ternary series, Gd_xY_{1-x}Fe_2Zn_{20} were grown out of Zn-rich solution. Measurements of magnetization, resistivity and heat capacity on Gd_xY_{1-x}Fe_2Zn_{20} samples reveal ferromagnetic order of Gd^{3+} local moments across virtually the whole series (x≥0.02x \geq 0.02). The magnetic properties of this series, including the ferromagnetic ordering, the reduced saturated moments at base temperature, the deviation of the susceptibilities from Curie-Weiss law and the anomalies in the resistivity, are understood within the frame work of dilute, S\textbf {S} moments (Gd^{3+}) embedded in a nearly ferromagnetic Fermi liquid (YFe_2Zn_{20}). The s-d model is employed to further explain the variation of TCT_{\mathrm{C}} with x as well as the temperature dependences of of the susceptibilities

    Cattle as a consistently resilient agricultural commodity

    Get PDF
    This study compares a range of agricultural commodities over periods of varying economic circumstances. These commodities are examined over three categories, including returns, risk, and contribution to portfolio optimisation. Consistency in these categories is determined over four equal three-year stages which comprise pre-GFC (Global Financial Crisis), GFC, post-GFC and post-post GFC. To demonstrate resilience in the most extreme circumstances, the study uses Conditional Value at Risk (CVaR), which measures extreme risk in the tail of a distribution, as the risk measure and risk-return optimiser. The study thus provides a unique and comprehensive extreme-risk based focus which identifies and ranks the consistency of performance of agricultural commodities over a range of criteria and conditions. Cattle commodities consistently demonstrate the strongest overall performance in the categories examined

    Observation of a Griffiths-like phase in the paramagnetic regime of ErCo_2

    Full text link
    A systematic x-ray magnetic circular dichroism study of the paramagnetic phase of ErCo2 has recently allowed to identify the inversion of the net magnetization of the Co net moment with respect to the applied field well above the ferrimagnetic ordering temperature, Tc. The study of small angle neutron scattering measurements has also shown the presence of short range order correlations in the same temperature region. This phenomenon, which we have denoted parimagnetism, may be related with the onset of a Griffiths-like phase in paramagnetic ErCo2. We have measured ac susceptibility on ErCo2 as a function of temperature, applied field, and excitation frequency. Several characteristics shared by systems showing a Griffiths phase are present in ErCo2, namely the formation of ferromagnetic clusters in the disordered phase, the loss of analyticity of the magnetic susceptibility and its extreme sensitivity to an applied magnetic field. The paramagnetic susceptibility allows to establish that the magnetic clusters are only formed by Co moments as well as the intrinsic nature of those Co moments

    Do nonparametric measures of extreme equity risk change the parametric ordinal ranking? Evidence from Asia

    Get PDF
    There has been much discussion in the literature about how central measures of equity risk such as standard deviation fail to account for extreme tail risk of equities. Similarly, parametric measures of value at risk (VaR) may also fail to account for extreme risk as they assume a normal distribution which is often not the case in practice. Nonparametric measures of extreme risk such as nonparametric VaR and conditional value at risk (CVaR) have often been found to overcome this problem by measuring actual tail risk without applying any predetermined assumptions. However, this article argues that it is not just the actual risk of equites that is important to investor choices, but also the relative (ordinal) risk of equities compared to each other. Using an applied setting of industry portfolios in a variety of Asian countries (benchmarked to the United States), over crisis and non-crisis periods, this article finds that nonparametric measures of VaR and CVaR may provide only limited new information to investors about relative risk in the portfolios examined as there is a high degree of similarity found in relative industry risk when using nonparametric metrics as compared to central or parametric measures such as standard deviation and parametric VaR

    Electrical conductivity beyond linear response in layered superconductors under magnetic field

    Full text link
    The time-dependent Ginzburg-Landau approach is used to investigate nonlinear response of a strongly type-II superconductor. The dissipation takes a form of the flux flow which is quantitatively studied beyond linear response. Thermal fluctuations, represented by the Langevin white noise, are assumed to be strong enough to melt the Abrikosov vortex lattice created by the magnetic field into a moving vortex liquid and marginalize the effects of the vortex pinning by inhomogeneities. The layered structure of the superconductor is accounted for by means of the Lawrence-Doniach model. The nonlinear interaction term in dynamics is treated within Gaussian approximation and we go beyond the often used lowest Landau level approximation to treat arbitrary magnetic fields. The I-V curve is calculated for arbitrary temperature and the results are compared to experimental data on high-TcT_{c} superconductor YBa2_{2}Cu3_{3}O%_{7-\delta}.Comment: 8 pages, 3 figure

    Magnetic behavior of nanocrystalline ErCo2

    Full text link
    We have investigated the magnetic behavior of the nanocrystalline form of a well-known Laves phase compound, ErCo2 - the bulk form of which has been known to undergo an interesting first-order ferrimagnetic ordering near 32 K - synthesized by high-energy ball-milling. It is found that, in these nanocrystallites, Co exhibits ferromagnetic order at room temperature as inferred from the magnetization data. However, the magnetic transition temperature for Er sublattice remains essentially unaffected as though the (Er)4f-Co(3d) coupling is weak on Er magnetism. The net magnetic moment as measured at high fields, sat at 120 kOe, is significantly reduced with respect to that for the bulk in the ferrimagnetically ordered state and possible reasons are outlined. We have also compared the magnetocaloric behavior for the bulk and the nano particles.Comment: JPCM, in pres

    New Observations of Extra-Disk Molecular Gas in Interacting Galaxy Systems, Including a Two-Component System in Stephan's Quintet

    Get PDF
    We present new CO (1 - 0) observations of eleven extragalactic tails and bridges in nine interacting galaxy systems, almost doubling the number of such features with sensitive CO measurements. Eight of these eleven features were undetected in CO to very low CO/HI limits, with the most extreme case being the NGC 7714/5 bridge. This bridge contains luminous H II regions and has a very high HI column density (1.6 X 10^21 cm^-2 in the 55" CO beam), yet was undetected in CO to rms T(R)* = 2.4 mK. The HI column density is higher than standard H2 and CO self-shielding limits for solar-metallicity gas, suggesting that the gas in this bridge is metal-poor and has an enhanced N(H2)/I(CO) ratio compared to the Galactic value. Only one of the eleven features in our sample was unambiguously detected in CO, a luminous HI-rich star formation region near an optical tail in the compact group Stephan's Quintet. We detect CO at two widely separated velocities in this feature, at ~6000 km/s and ~6700 km/s. Both of these components have HI and H-alpha counterparts. These velocities correspond to those of galaxies in the group, suggesting that this gas is material that has been removed from two galaxies in the group. The CO/HI/H-alpha ratios for both components are similar to global values for spiral galaxies.Comment: 39 pages, Latex, 15 figures, Astronomical Journal, in pres

    What influences the speed of prototyping? An empirical investigation of twenty software startups

    Full text link
    It is essential for startups to quickly experiment business ideas by building tangible prototypes and collecting user feedback on them. As prototyping is an inevitable part of learning for early stage software startups, how fast startups can learn depends on how fast they can prototype. Despite of the importance, there is a lack of research about prototyping in software startups. In this study, we aimed at understanding what are factors influencing different types of prototyping activities. We conducted a multiple case study on twenty European software startups. The results are two folds, firstly we propose a prototype-centric learning model in early stage software startups. Secondly, we identify factors occur as barriers but also facilitators for prototyping in early stage software startups. The factors are grouped into (1) artifacts, (2) team competence, (3) collaboration, (4) customer and (5) process dimensions. To speed up a startups progress at the early stage, it is important to incorporate the learning objective into a well-defined collaborative approach of prototypingComment: This is the author's version of the work. Copyright owner's version can be accessed at doi.org/10.1007/978-3-319-57633-6_2, XP2017, Cologne, German
    • …
    corecore