
                          Nguyen, D. H., Lowenberg , M. H., & Neild, S. A. (2020). Frequency-
Domain Bifurcation Analysis of a Nonlinear Flight Dynamics Model.
Journal of Guidance, Control, and Dynamics.
https://doi.org/10.2514/1.G005197

Peer reviewed version

Link to published version (if available):
10.2514/1.G005197

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via American Institute of Aeronautics and Astronautics at https://doi.org/10.2514/1.G005197 . Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.2514/1.G005197
https://doi.org/10.2514/1.G005197
https://research-information.bris.ac.uk/en/publications/5df57c8a-9c87-428e-8830-9c404eb9a749
https://research-information.bris.ac.uk/en/publications/5df57c8a-9c87-428e-8830-9c404eb9a749


 

1 

 

 

Frequency-Domain Bifurcation Analysis of a 

Nonlinear Flight Dynamics Model 

Duc H. Nguyen1, Mark H. Lowenberg2, and Simon A. Neild3 

Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR 

This paper presents a methodology for systematically studying the nonlinear frequency 

responses of an aircraft model using numerical continuation with periodic forcing, thereby 

presenting an extension of conventional bifurcation analysis in flight dynamics applications. 

The motivation is to identify nonlinear phenomena in the frequency domain that are absent 

in linearized models - upon which many control law designs are based - and which therefore 

risks degrading the performance or robustness of the linear-model based controllers. Since 

the aerospace industry typically uses linearizations in controller design, both open and closed-

loop behaviors are considered. When the example aircraft considered here is forced with small 

control surface deflections, highly nonlinear responses are observed. This includes period-

doubling bifurcations, fold bifurcations leading to existence of multiple solutions, quasi-

periodic motions, and formation of isolas. Closed-loop responses of a proportional stability 

augmentation controller for this aircraft become out of phase with the linear prediction at low 

forcing frequencies when the aircraft operates at high angle of attack. To address these 

behaviors, the methodology is extended by employing two-parameter continuation of the 

controller gain to assess its effectiveness in those nonlinear regions, where linear controller 

design techniques cannot be used. Time histories are used to verify the results.  

Nomenclature 

A  = elevator forcing amplitude (deg) 

q = pitch rate (deg/s) 
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t = time (s) 

V = total velocity (m/s) 

α  = angle of attack (deg) 

δe  = elevator (deg) 

∆ = incremental, relative to trim value (used as prefix) 

θ  = pitch angle (deg) 

𝛾  = flight path angle (deg) 

𝜔  = elevator forcing frequency (Hz) 

 

I. Introduction 

 Aircraft controllers are typically designed using linear techniques at a number of operating points across the flight 

envelope. The resulting controllers are then combined into a single nonlinear gain-scheduled controller. Although the 

linear design techniques offer many advantages, most importantly the availability of closed-form solutions, this 

approach may be questionable when the aircraft operates in highly nonlinear regions. Under such conditions, it is 

likely that the intended loop-shaping objectives will not be met - and the controller effectiveness may become severely 

degraded in cases where strong nonlinearities such as multiple solutions and hysteresis arise. These problems can 

occur during extreme maneuvering for a fighter aircraft, or in upsets and loss-of-control situations for a civilian 

aircraft. Therefore, it is important to determine the extent to which the linear model can capture the dynamics before 

the predicted response no longer adequately matches the actual response of the full nonlinear model. This paper 

proposes a novel approach to study this problem by using numerical tools from bifurcation analysis to characterize 

the nonlinear behavior of the system coupled with a harmonic oscillator. This permits the assessment of frequency-

domain-based assumptions used in linear control design, such as stability margins or superposition. The objective is 

to identify regions in which linear-model based design is questionable.   

Nonlinear phenomena in flight dynamics have been widely documented, and much research has been done to 

combine nonlinear analysis with classical flight dynamics and control theory to improve performance and safety. Since 

their first application on an aircraft model [1], bifurcation analysis and continuation methods have gained recognition 

in the flight dynamics research community as a powerful tool in studying nonlinear phenomena at high angle of attack 
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commonly found for high-performance fighter jets [2-7]. More recently, the tool has been used on civil applications 

to study airliner upsets and loss-of-control [8-10] following accidents such as Air France flight 447. Specifically, it is 

shown in [9] that dangerous upset conditions like entry into oscillatory spins caused by an incorrect pilot response 

from a spiral dive can be characterized as stable attractors in the phase space. A linear representation of the aircraft 

cannot capture this behavior and as a result, a controller based on this linearization may be unable to recover the 

aircraft from upsets outside the normal operating envelopes. Indeed, in [10], the analysis was repeated on the same 

aircraft model coupled with a linear gain-scheduled controller and was successful in identifying upset attractors that 

are still beyond the controller’s capability. Analysis on the effect of controller gains in eliminating those regions of 

upsets was also carried out in [10], which proved useful in comparing the robustness of different controller designs. 

While most published work on flight dynamics and control using continuation methods focus on studying 

equilibrium solutions to satisfy handling quality requirements in the time domain, very little has been done to study 

periodic solutions of a forced system to satisfy frequency-domain criteria. In linear system theory, a harmonic input 

produces a harmonic output of the same frequency whereas the output of a nonlinear system may contain multiple 

frequencies. Moreover, a smooth variation in forcing frequency or amplitude in a linear system produces smooth 

changes in response amplitude and phase. In a nonlinear system, the response is dependent on both forcing frequency 

and amplitude and may give rise to bistable solutions. A smooth variation in input frequency could then, for example, 

cause abrupt changes in both amplitude and phase, known as jump phenomena. Forced oscillation of nonlinear systems 

has been studied in depth, such as in [11, 12], but its application has so far been limited to primarily structural 

engineering [13-16].  

Despite limited studies in the flight dynamics context, the problem of nonlinear oscillation can arise in aircraft 

with complex and highly augmented flight control systems due to coupling between the aircraft’s natural modes, 

structural modes, aerodynamics, and the control system itself. During a series of low altitude and high speed test 

flights outside the operational envelope, a B-2 encountered residual pitch oscillations in response to a doublet input 

on control surfaces [17]. The phenomenon was not predicted by analytical methods, wind tunnel tests or previous 

flutter tests, and subsequent work determined the possible cause to be a complex interaction between transonic 

aerodynamics and aeroelasticity. The study concluded that a pilot should stay clear of that region in the envelope and 

made no mention of the B-2’s complex and highly classified stability augmentation system, which cannot be disabled 

in flight [17]. It is possible that the interaction between aerodynamic and structural dynamics had created a highly 
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nonlinear forced oscillation situation, which coupled with the flight control system and led to the pitch oscillation in 

question. This is demonstrated in [18], which showed that a controller designed for a rigid aircraft model has degraded 

performance when used on the non-rigid model of the same aircraft due to the reduced frequency separation between 

the rigid-body and flexible modes. Nevertheless, these studies still focus on the structural aspects of the aircraft, and 

there remains a gap in the literature around the topic of nonlinear interactions between the flight control system and 

the aircraft natural modes. The nonlinear phenomena mentioned above may cause violations of the frequency response 

design criteria, degrade the controller’s performance and therefore compromise performance and safety, especially at 

high angle-of-attack and in regions outside the normal operational envelope.  

Among the few studies on flight dynamics involving forced response using continuation methods are [19, 20]. In 

[19], a harmonic oscillator was coupled to an F/A-18 model with pilot (modeled as a simple proportional gain) in the 

loop: the objective was to predict pilot-induced oscillations through observation of rapid increases in output oscillation 

amplitudes as pilot gain parameter is varied. In [20], the harmonic oscillator was appended to the thrust vector 

deflection of an F-18 HARV model flying at very high angles of attack, where conventional control surfaces are 

ineffective. Although the ranges of forcing amplitude and frequency are relatively narrow (no more than 2o in 

amplitude and between 0.1 and 1 rad/s in frequency), the aircraft’s response is extremely complex. Different 

combinations of the forcing parameters can result in period-1, period-2, period-4 or chaotic motions caused by a 

number of period-doubling and torus bifurcations. The study also identified cases in which the same input can result 

in period-1, period-2 or chaotic motions, suggesting a dependence on the initial conditions. This is caused by the 

coexistence of several stable attractors at the same frequencies, some of which are chaotic and, therefore, give rise to 

the aircraft’s complex behavior. Since a linearization of the model is incapable of capturing these phenomena, 

knowledge of them is essential to designing an adequate controller.  

This paper expands on the technique presented in [19, 20] to study an aircraft’s forced responses, specifically by 

generating  a nonlinear frequency response plot to assess the dynamics in the frequency domain. This method is 

applicable to both the open and closed-loop dynamics, which can be used to inform the control designer of the 

controller’s validity by comparing its linear and nonlinear frequency responses, thereby determining regions in which 

the linearized and the full nonlinear model may behave differently. This technique also provides the possibility of 

capturing the effects of any unsteady (time-dependent) features in the model - which the evaluation of steady states in 

an autonomous (unforced) implementation would miss.  
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II. Methodology: Bifurcation Analysis of Periodically Forced Systems  

Bifurcation analysis facilitates a systematic study of changes in qualitative behavior of a nonlinear dynamical 

system. This includes (but is not limited to) the existence of multiple solutions, jump phenomena and stability loss, 

which are clearly important in flight dynamics. One of the goals of bifurcation analysis is to produce a map of how 

the system’s steady states change with respect to a control parameter (i.e. to construct a bifurcation diagram), and to 

provide information on the nature and stability of those solutions. This process requires solving the full nonlinear 

equations of motion of the system (such as an aircraft model), which can be very complex analytically. In practice, 

the equations are solved using numerical continuation, which utilizes a path-following algorithm to trace out the 

solutions of the system from an initial solution supplied by the user [21]. The varying control parameter in numerical 

continuation is called the continuation parameter. In a flight dynamics model, this can be elevator deflection, center 

of gravity position, or controller gain, for example. Bifurcation diagrams do not provide any information on the 

transient responses, such as how quickly the system converges to a steady state, so numerical simulations must always 

be performed to verify the results and understand the transient dynamics. More background on bifurcation analysis 

and continuation methods for autonomous (unforced) systems can be found in [2, 21]. In this paper, bifurcation 

analysis and continuation methods were implemented in the MATLAB environment using the Dynamical Systems 

Toolbox [22], which is a MATLAB implementation of the software AUTO [23].  

Since the focus of this paper is on bifurcation analysis of a periodically forced system, we first explored the concept 

by applying the technique to a simple nonlinear system: the Duffing equation. This is a well-studied example (see [11, 

12]) that describes a nonlinear mass-spring-damper system and is commonly used to demonstrate the common 

phenomena encountered in a nonlinear forced system. This spring generates a restoring force that is a summation of a 

term proportional to the linear displacement 𝑥 and another term proportional to the cubic displacement 𝑥3. The 

equation has the form: 

 

1 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 + 𝛼𝑥3 = 𝐴 cos(𝜔𝑡) (1) 

 

where 𝑡 is time in (s), 𝜔 is the forcing frequency (rad/s), 𝐴 is the forcing amplitude (N), 𝛼 is the nonlinear stiffness 

coefficient (N/m3) and the 𝑘 and 𝑐 terms correspond to linear stiffness (N/m) and damping coefficient (Ns/m), 
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respectively. For convenience, a mass of 𝑚 = 1 kg is assumed. If 𝛼 = 0 N/m, equation (1) becomes a linear system 

with constant stiffness, while 𝛼 > 0 results in a hardening spring and 𝛼 < 0 results in a softening spring.  

To facilitate the calculation of periodic solutions using the numerical continuation technique, equation (1) is 

rewritten as the following fourth-order system:  

 

2 �̇�1 = 𝑥2 (2) 

3 �̇�2 = −𝑘𝑥1 − 𝑐𝑥2 −  𝛼𝑥1
3 + 𝐴𝑥4 (3) 

4 �̇�3 = 𝑥3 + 𝜔𝑥4 − 𝑥3(𝑥3
2 + 𝑥4

2) (4) 

5 �̇�4 = −𝜔𝑥3 + 𝑥4 − 𝑥4(𝑥3
2 + 𝑥4

2) (5) 

 

where equations (2) and (3) describe the first and second derivative of the state 𝑥 = 𝑥1, and equations (4) and (5) are 

the nonlinear oscillator used to generate the harmonic forcing term. It can be shown that 𝑥3 = sin(𝜔𝑡) and 𝑥4 =

cos(𝜔𝑡). Using this relationship, the forcing term 𝐴 cos(𝜔𝑡) becomes 𝐴𝑥4, as shown on the right-hand side of 

equation (3). 

 In order to calculate the frequency response, the forcing frequency 𝜔 is chosen as the continuation parameter. The 

four equations of motions are then solved for a chosen range of 𝜔 using the continuation algorithm, which generates 

a one-cycle periodic solution at each value of 𝜔 for all four states. As an example, two solutions to equation of (6) for 

the state 𝑥 are shown in Figure 1. 

 

6 �̈� + 0.2�̇� + 𝑥 + 0.05𝑥3 = 2.5 cos(𝜔𝑡) (6) 

 

 

Fig 1  Periodic solutions to equation (6) of the state 𝒙 at 𝝎 = 2.509 rad/s (a) and 𝝎 = 0.298 rad/s (b). 

a) b) 
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From Figure 1, the amplitude and phase of the oscillation are calculated using the following formula:  

 

7 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =
𝑌3−𝑌4

2
    or    𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑖𝑛 𝑑𝐵 = 20 𝑙𝑜𝑔10 (

𝑌3−𝑌4

𝑌1−𝑌2
) (7) 

8      𝑝ℎ𝑎𝑠𝑒 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 = (𝑋1 − 𝑋3) × 360 (8) 

 

where 𝑋𝑖 and 𝑌𝑖 refer to the x and y-coordinates of point 𝑖 in Figure 1.  

Unlike in a linear system, the nonlinear forced response can contain multiple harmonics such as the case shown in 

Figure 1b. When this happens, the horizontal distance between points 1 and 3 no longer corresponds to the 

mathematical definition of phase in a linear forced system. Therefore, the phase diagram on the frequency response 

plot should see a small jump when the effect of additional harmonics becomes prominent. However, this way of 

determining the phase is deemed satisfactory as solutions that are not simple harmonic can be easily identified, which 

matches the main goal of determining regions where the nonlinear response differs from its linearized counterpart; the 

latter only produces simple harmonic sinusoidal outputs.  

The frequency response of equation (6) is shown in Figure 2. The most notable difference from its linearized 

counterpart is the leaning of the solution curve, which is caused by the existence of the nonlinear term 𝛼 = 0.05. As a 

result, there are multiple possible responses for a single forcing frequency near resonance, which can be stable (solid 

line) or unstable (dashed line). To verify this phenomenon, the system is simulated with a slowly varying forcing 

frequency using a chirp signal. Data from the simulation is superimposed on the figure as a grey line and shows that 

the response will always follow the stable solutions. This indicates a dependency on the initial condition, which is a 

feature of nonlinear systems. 

It is also noted that there are some additional small resonances at low frequencies known as subharmonic 

resonance. Its presence is also reflected in the phase jumps at the corresponding frequencies due to the additional 

harmonics introduced – one such case has been shown in Figure 1b. These harmonics can exist in a nonlinear system 

but are usually omitted in analytical solutions such as in [11] due to complexity. However, they can be easily detected 

using a numerical solver like AUTO. Due to their existence, a time history simulation picks up the ‘false peaks’ shown 

in Figure 3, which led to the apparent discrepancies between numerical and simulated results shown in Figure 2. In 

practical terms, this discrepancy is useful in detecting regions where the response is not simply harmonic when 

examining the simulated frequency response. 
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Fig 2  Frequency responses of equation (6) with time-stepping simulated frequency sweeps superimposed. 

 

 

Fig 3  Time histories of the reducing frequency sweep as shown in Figure 2b. The ‘false peaks’ picked up by 

the code are circled. 

a) 

b) 
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Another notable feature in a nonlinear forced response is the dependency on the forcing amplitude. Figure 4 shows 

that increasing the forcing amplitude not only leads to larger responses but also makes the leaning of the resonance 

more prominent, which widens the region of multiple solutions. It is possible to identify the border of this region in 

the frequency-amplitude space using a technique called two-parameter continuation, which tracks the movement of 

the fold bifurcations (the point at which the solution folds back and creates a region of multiple solutions) as the 

forcing frequency and forcing amplitude change. The locus of the fold bifurcations is shown as a thin line in Figure 

4, and its projection onto the 𝜔-𝐴 plane is shown in Figure 5. It can be seen that if the forcing amplitude is small 

enough, the fold bifurcations disappear and only one stable solution exists for each forcing frequency, similar to what 

is seen in linear systems. Two-parameter continuation is a powerful technique that can be used to determine a nonlinear 

region’s sensitivity to a system parameter.  

 

Fig 4  Frequency responses of equation (6) but for three different forcing amplitudes. 

 

Fig 5  Two-parameter continuation of the fold bifurcation in the 𝝎-𝑨 plane. 
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This section has illustrated the types of behavior that a nonlinear periodically forced system can produce as well 

as the tools used to study them. The validity of the techniques used on the continuation software AUTO to characterize 

a simple nonlinear forced system has also been demonstrated. In the following sections, the same technique is used to 

generate the forced response of an aircraft model to assess its frequency response. The list of symbols used in the 

nonlinear frequency response is shown in Table 1. 

 

Table 1. Notation as used in the nonlinear frequency responses figures and bifurcation diagrams. 

 Stable solution 

 Unstable solution 

 Torus bifurcation (the periodically forced response loses stability) 

 Fold bifurcation 

 Period-doubling bifurcation (the forced response repeats itself after twice the forcing cycle) 

 

III. Description of the Aircraft Model 

The methodology presented in this paper is applied to the NASA Generic Transport Model (GTM). The GTM is 

a nonlinear simulation of a 5.5% scale, remotely piloted, generic twin-under-wing engine civil transport aircraft, which 

was developed to study airliner upsets and loss-of-control. For this paper, two versions of the GTM are used: 

 1) Section VI uses the DesignSim implementation, which is a Matlab/Simulink nonlinear simulation of the 8th-

order aircraft with avionics dynamics [24]. Its aerodynamic data is stored in lookup tables and are based on wind-

tunnel tests for angles-of-attack between -5o and 85o and sideslip angles below 45o. For this paper, we utilized spline 

interpolation of the aerodynamic data to ensure smoothness for bifurcation analysis and ignored the influence of 

avionics – the same approached presented in [9, 10]. The DesignSim was chosen to show that the method can be 

applied to an industrial-standard aircraft model, as well as to demonstrate the complex dynamics encountered in such 

an application. This version is referred to as the ‘full GTM’. 

 2)  A polynomial representation of the DesignSim is used in sections IV and V [8] where only longitudinal motions 

are considered, allowing us to reduce the model to 4th-order. Combined with the use of polynomials instead of lookup 
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tables, this version offers significant reducing in computation time. In addition, the polynomial model is also 

symmetric about the body x-z plane, unlike the real GTM, which simplifies the study and making it ideal to 

demonstrate our method. Table 2 lists the two operating points to be studied, which represent medium and high angles 

of attack, and Figure 6 shows the positions of their roots in the complex plane. The aircraft is trimmed in straight-and-

level horizontal flight in both cases by adjusting the elevator deflection and throttle. This is appropriate as linear gain-

scheduled controllers are typically designed around the trim points. This version is referred to as the ‘polynomial 

GTM’. 

 

Table 2. Operating points to be studied 

Operating 

point 

𝛼 = 𝜃  

(deg) 

𝑉 

(m/s) 

𝑞 

(deg/s) 

𝛿𝑒 

(deg) 

Throttle Description 

1 9 29.6 0  0.68 12.7% Phugoid mode is marginally damped 

2 18 25 0 -7.2 59% Short period mode is unstable 

 

 

Fig 6  Longitudinal root loci of the polynomial GTM for elevator deflections between -30o and 6o.  

 

IV. Longitudinal dynamics at medium angle-of-attack (α = 9o) 

In this section, the frequency response at 9o angle-of-attack is used to demonstrate how continuation analysis can 

reveal the effect of the controller gain on the aircraft’s dynamics in the frequency domain. The polynomial GTM is 

trimmed for straight-and-level flight at 29.6 m/s (see Table 2). First, considering the open-loop dynamics, the pitch-
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angle-to-elevator Bode plots are shown in Figure 7a for the linear model and Figure 7b for the nonlinear model. For 

clarity, bifurcation symbols are not shown in Figure 7b. However, they are shown in the magnified view given in 

Figure 9a. Apart from the two peaks at the phugoid and short-period frequencies (0.07 Hz and 0.60 Hz), the nonlinear 

model contains additional peaks at low frequencies (between 0.017 and 0.035 Hz), known as subharmonic resonance, 

as well as a peak at 0.14 Hz (to the right side of the phugoid resonance) due to a pair of period-doubling bifurcations; 

all of which are not captured in the linear model. The peak at 0.14 Hz can be referred to as superharmonic resonance. 

Additionally, the resonance curves in the nonlinear response lean to the right, indicating that the aircraft resembles a 

hardening system (i.e. the restoring force increases with higher oscillation amplitude, which is expected for a 

dynamically stable airliner). Unstable solutions are seen in the nonlinear response, which cause the aircraft to diverge 

if it is forced at one of those frequencies. 

 

 

Fig 7  Linear (a) and nonlinear (b) open-loop pitch-angle-to-elevator Bode plots at α = 9o. 

a

) 

b) 
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As the nonlinear dynamics and instability observed in this region are caused by the phugoid mode being marginally 

damped (see Figure 6), a common method to improve stability is to use pitch angle feedback. For this study, a simple 

proportional stability augmentation controller as shown in Figure 8 is used, and the elevator demand signal is given a 

harmonic input in the form of cos (𝜔𝑡). The effect of increasing the proportional gain from zero on the elevator-

demand-to-pitch-angle frequency response will be studied, which we will refer to as the elevator-to-pitch-angle 

frequency response (with the word ‘demand’ omitted). 

 

 

Fig 8  Proportional stability augmentation controller. 

Figure 9 shows how the nonlinear frequency response is modified due to the controller gain increasing from 0 to 

0.08, and Table 3 summarizes the notable changes. The rest of this section will explain how numerical continuation 

is used to identify the features listed in Table 3. 

 

Table 3. Summary of the frequency responses in Figure 9. 

Gain Figure Description 

0 9a Open-loop frequency response (note the change of y-axis unit from dB to deg). 

0.00046 9b The unstable subharmonic resonance detaches from the main branch and forms an isola. 

0.00820 9c The unstable superharmonic resonance detaches from the main branch and forms an isola. 

0.014 9d The stable superharmonic (period-2) resonance disappears. 

0.024 9e The unstable phugoid resonance detaches from the main branch and form an isola. 

0.080 9f Most of the subharmonic resonance is suppressed. 

0.113 not shown The isola formed by the superharmonic (period-2) resonance disappears. 

0.129 not shown The isola formed by the subharmonic resonance disappears. 

0.148 not shown The isola formed by the phugoid resonance disappears. 
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Fig 9  Frequency responses at different controller gains. The dotted rectangles are used to highlight the 

notable features; solid rectangles are magnified views. 

A. Detecting the formation of isolas 

The inset panels in figures 9a and 9b show the process of the unstable solutions in the subharmonic resonance 

detaching from the main branch as the controller gain increases from 0 to 0.00046. This process is shown in more 

a) b) 

c) d) 

e) f) 



 

15 

 

 

detail in Figure 10 with an intermediate step at gain 0.00040. The isola is formed when the torus bifurcation and the 

lower fold bifurcation collide, which ‘connects’ the stable solutions while ‘cutting off’ the unstable solutions from the 

main branch. Detecting isolas using numerical continuation is difficult as the method can only map out the solutions 

connected to the initial solution supplied by the user. However, this can be overcome by tracing the movement of the 

bifurcation points (fold and torus bifurcations in this case) using two-parameter continuation, shown as the blue and 

grey lines in Figure 10. When an isola formation is suspected, such as when the torus and fold bifurcation collide, one 

of the fold bifurcation points can be then used as the initial solution and the isola can then be traced.  

To verify that the divergent motion due to unstable solutions no longer exists, the aircraft is forced at the frequency 

0.03503 Hz using the three different controller gains shown in Figure 10. Their time histories (Figure 11) show that 

in the first two cases (gains 0 and 0.00040), the responses still diverge to infinity, leading to the simulation failing, 

while in the third case (gain 0.00046), the response is stable, confirming that the unstable solution has been removed 

from the main branch. Although all solutions in the isola are unstable in this case, which removes the possibility of 

two possible responses for the same forcing frequency (one in the main branch and one in the isola with much higher 

amplitude), the presence of the unstable isola can still influence dynamic response in this region, e.g. in the case of a 

large pitch disturbance. 

 

 

Fig 10  Formation of the isola in the subharmonic resonance region. 
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Fig 11  Simulated response of the aircraft forced at 0.03503 Hz for three controller gains:  

0 (a), 4.0x10-4 (b), and 4.6x10-4 (c). 

 Using the same technique, the isolas formed in the superharmonic and phugoid resonances can also be traced. The 

point at which they detach from the main branch are shown in figures 9c and 9e. 

B. Eliminating the superharmonic (period-2) resonance  

In the period-2 superharmonic region (see Figure 9a), the aircraft’s response repeats itself after two instead of one 

forcing cycle – a highly nonlinear behavior that is not captured in the linear model. Figure 12 shows the simulation 

results when the aircraft is forced at 0.137 Hz and 0.138 Hz, corresponding to the stable and unstable solutions in the 

period-2 region, respectively. In both cases, period-2 motions are observed, and the oscillation amplitude is very large 

compared to the linear model’s prediction at these frequencies. When the forcing frequency lies within the unstable 

region such as in the second case (0.138 Hz), the aircraft diverges. This large amplitude period-2 motion is undesirable.  

Using our proportional pitch-angle-feedback controller, we cannot rely on linear design techniques to determine 

the controller’s effectiveness in eliminating the period-2 region as this motion is not captured by the linear model. 

Instead, the two-parameter continuation technique can be used to determine the controller’s effectiveness by tracking 

the movement of the period-doubling bifurcation in the frequency-proportional gain space – thereby providing 

information on how the period-2 region is modified as the controller gian increases. The result in Figure 13 shows that 

as the controller gain increases, the two period-doubling bifurcations approach each other, reducing the size of the 

period-2 region, and finally merge when the controller gain reaches 0.01379, meaning that this is the minimum gain 

required to eliminate the period-2 motion. To verify this, the aircraft is forced again at 0.138 Hz but with the gain set 

a) 

b) 

c) 
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at 0.0140, shown in Figure 14. Comparing to Figure 12b, the oscillation is now stable and has the same period as the 

forcing term, confirming that the period-doubling bifurcations no longer exist in the main solution branch.  

 

 

Fig 12  Open-loop period-2 response at 0.137 Hz (a) and 0.138 Hz (b). 

 

Fig 13  Locus of the period-doubling bifurcations. 

 

Fig 14  Closed-loop response at 0.138 Hz with gain 0.014. 

a) 

b) 
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C. Eliminating the subharmonic resonance 

 Figure 9e shows that at gain 0.024, all unstable and divergent solutions have been removed from the main branch, 

so the forced response is stable at all frequencies. However, the subharmonic resonance is still prominent at 

frequencies below the phugoid resonance, so a higher controller gain is needed to remove them. Since there is no 

longer any bifurcation on the main branch, two-parameter continuation cannot be used. Instead, one-parameter 

continuation of the controller gain is utilized. Referring back to Figure 7a, it is known from the standard elevator-to-

pitch-angle transfer function of the linear model that below the phugoid frequency (0.065 Hz), the response amplitude 

is proportional to the forcing frequency (i.e. higher forcing frequency leads to larger response, up to 0.065 Hz). This 

is not the case in the nonlinear model in the presence of the subharmonic resonance peaks. It is desirable to know the 

controller gain required to remove these subharmonic resonances, therefore making the full aircraft behave more like 

its linear counterpart. To do this, one-parameter continuation of the controller gain is done at two frequencies: 0.0350 

Hz (near the peak of the subharmonic resonance in Figure 9a) and a nearby point at higher frequency, chosen as 0.0385 

Hz in this case. The result in Figure 15 shows that as the controller gain increases from 0, the response amplitude at 

the lower frequency (0.0350 Hz) rapidly decreases and eventually becomes lower than the response at the higher 

frequency (0.0385 Hz) for controller gain beyond 0.07. This shows that in order to remove the subharmonic resonance, 

the controller gain cannot be less than 0.07. As shown in Figure 9f, at gain 0.08, most of the subharmonic resonance 

has been removed. 

 

 

Fig 15  Continuation of the controller gain at the subharmonic region for two different frequencies. 
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D. Eliminating the unstable isolas  

Figure 9f indicates that at gain 0.08, the nonlinear frequency response is stable across the entire frequency range 

considered and resembles a linearized response. However, the three unstable isolas that emerged from the 

subharmonic, phugoid, and superharmonic resonances still exist and can influence the aircraft’s dynamics, such as in 

the case of a large disturbance. The edges of these isolas are three pairs of fold bifurcations labelled A to F. Again, by 

using two-parameter continuation to track the movement of these fold bifurcations, the gain required to remove each 

isola can be determined. Figure 16 shows the two-parameter continuation of the points A to F as the controller gain 

changes. Despite their complex trajectory, it can be seen that each pair of fold bifurcation will merge when the 

controller is high enough, indicating the disappearance of the isola. The gains required to remove each isola are listed 

as the last three items the of Table 3. For a gain above 0.148, the final isola that emerges from the phugoid resonance 

ceases to exists. 

 

 

Fig 16  Two-parameter continuation of all fold bifurcations shown in Figure 9f. 

 

In summary, this section has so far shown the advantages of using nonlinear analysis in identifying the undesirable 

dynamics in the frequency domain that are not captured by the linear model. Using both one and two-parameter 

continuation of the controller gain, we can assess the controller’s effectiveness in removing those undesirable 

attractors.  
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V. Longitudinal dynamics at higher angle-of-attack (α = 18o) 

Now we consider the polynomial GTM trimmed for straight-and-level flight 18o angle-of-attack (see Table 2). The 

short-period mode is unstable at this operating point, and the unforced aircraft enters a limit cycle – a self-sustaining 

bounded oscillation – without any external input. Forcing the open-loop aircraft at this angle-of-attack will resulting 

in motions that appear to be quasi-periodic as shown in Figure 17. The linear model cannot capture this behavior but 

can only indicate that the aircraft is unstable. Therefore, the linear aircraft diverges to infinity as soon as it is perturbed 

from the trim condition, whether forced or unforced. Due to these differences, the open-loop frequency response is 

not considered in this section. 

 

 

Fig 17  Phase plot of the open-loop nonlinear aircraft responding to an elevator forcing at 1 Hz. 

 

To stabilize the short-period mode, a pitch-rate-feedback controller with proportional gain 0.05 is used (similar to 

the scheme in Figure 8 but using pitch rate for the feedback signal). Figure 18 compares the linear and nonlinear 

closed-loop unforced responses when subjected to an elevator perturbation of 0.1o and duration 0.1s. Whilst the short-

period responses are similar, it can be seen that the low-frequency content from the phugoid mode is much less damped 

in the nonlinear model.  

The reduced damping of the phugoid mode in the nonlinear response is more clearly reflected in the frequency 

domain. Figure 19 compares the linear and nonlinear closed-loop frequency responses, where large discrepancies are 

seen at low frequencies. In particular, a large difference in gain and phase is observed around the phugoid frequency, 

approximately near 10-1 Hz. As the forcing frequency is reduced further, the gain again becomes similar while the 
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phase difference increases to as high as 180o. This means that at low frequencies, the nonlinear pitch angle response 

is completely out of phase with the linear response and hence with the pilot input. To verify this, the linear and 

nonlinear models are simulated with a harmonic elevator input of magnitude 1o and frequency 0.07358 Hz (Figure 

20). This frequency was chosen as it is near the peak of the phugoid resonance, where the largest discrepancies in both 

gain and phase are observed between the linear and nonlinear models. It can be seen that although the controller has 

stabilized the aircraft, the responses are completely out of phase and have different magnitudes. Although this 

reduction in handling quality is not captured by the linear model, the use of continuation methods can provide insights 

on the issue, specifically to inform the control designers that further investigation is required.  

This section has presented an example in which the linear model cannot adequately capture the aircraft dynamics. 

The use of closed-loop forced response and two-parameter continuation have been shown to be useful in informing 

the control designer of the lack of robustness of the controller in both the frequency and time domains.  

 

 

Fig 18  Linear (a) and nonlinear (b) closed-loop aircraft responding to an elevator perturbation. 

 

a) 

b) 
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Fig 19  Linear (a) and nonlinear (b) closed-loop pitch-angle-to-elevator Bode plots. 

 

 

Fig 20  Linear and nonlinear closed-loop response at 0.07358 Hz. 

a) 

b) 
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VI. Lateral-directional behavior at medium angle-of-attack (α = 9o) 

To further highlight the complex dynamics in the frequency domain purely due to aerodynamic nonlinearities, this 

section presents a brief investigation on aileron and rudder forcing of the 8th-order open-loop full GTM. All analysis 

was done with the aircraft trimmed at 8.7o angle-of-attack, where the phugoid instability is observed as discussed 

previously. Because the full GTM is asymmetric, any perturbation to one of its control surfaces will induce both 

longitudinal and lateral-directional motions. 

A. Aileron forcing 

The open-loop aileron-to-bank-angle frequency responses of the linearized and nonlinear GTM are shown in 

Figure 21. The inset in the nonlinear frequency response highlights a region with three stable solutions at just below 

0.062 Hz. Their existence is verified in time simulation (Figure 22). As a result, the same forcing frequency will lead 

to three very different responses with a peak pitch angle of around 9o, 30o, and 50o. The aircraft’s initial condition will 

determine which of these three stable solutions the aircraft converges to.  

To further investigate this phenomenon, we ran a large number of simulations at 0.0617 Hz with different initial 

yaw and bank angles while keeping the remaining six initial states at their trim values. Figure 23 shows the result of 

those simulations with the initial bank and side slip angles on the x and y axis. The color of each point indicates peak 

pitch angle in the final oscillation cycle after a 1000s simulation, which would converge to one of the three stable 

solutions of θ (9o, 30o, and 50o; the first one corresponds to normal flight). From Figure 23, the following observations 

can be made: 

- The normal flight response (9o – blue) dominates the central-right region, which indicates the asymmetric nature 

of the GTM. 

- The highest amplitude response (50o – yellow) is the least likely to occur. However, it can scatter almost randomly 

in a green-dominant region. One such example is shown in the magnified view, in which for the same sideslip angle 

of 0o, the three bank angles of -13o, -12o, and -11o converge to three different solutions. This means that changing the 

initial condition by just one degree can result in a vastly different response, which highlights the nonlinear nature of 

the GTM. Similar behavior can also be observed in other sections of Figure 23. 
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Fig 21  Linear (a) and nonlinear (b) aileron-to-bank-angle frequency response. 

a) 

b) 



 

25 

 

 

 

Fig 22  Three different possible responses to aileron forcing at 0.0617 Hz. 

 

 

Fig 23  Basin of attraction of the full open-loop GTM due to aileron forcing at 0.0617 Hz. 

B. Rudder forcing 

The linear and nonlinear open-loop rudder-to-yaw-rate frequency responses are shown in Figure 24. A pair of torus 

bifurcation between 0.63 and 0.78 Hz (near the middle of Figure 24b) results in a region of stable quasi-periodic 

response (see Figure 25 for the simulation). Additionally, the inset in the nonlinear frequency response indicates a pair 

of period-doubling bifurcation, which gives rise to a very complex period-7 motion shown in Figure 26. 
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Fig 24  Linear (a) and nonlinear (b) rudder-to-yaw-rate frequency responses. 

 

Fig 25  Quasi-periodic motion at 0.65 Hz rudder forcing. 

a) 

b) 
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Fig 26  Period-7 motion at 0.0604 Hz rudder forcing. 

 

Although the aileron and rudder are lateral-directional control surfaces, it has been shown that exciting them near 

the phugoid frequency can lead to high-amplitude oscillations in both the longitudinal and lateral-directional planes. 

This suggests some forms of modal interactions between the conventional flight dynamics modes due to the 

asymmetry of the aircraft model. The rich dynamics that are revealed also illustrates the nonlinear nature of the GTM. 

The same approach can be applied to more complex systems where nonlinear modal interaction is significant, such as 

in a highly flexible aircraft in which the structural dynamics is modelled. 

 

VII. Conclusions 

This paper has presented methods of generating the nonlinear frequency responses of an aircraft model using 

numerical continuation. It has been shown that the technique gives a clear indicator of where the behavior of the 

linearized model may differ significantly from that of the full model. The technique is applicable to both open and 

closed-loop analysis. Classical controller design methods rely on linearized models, which do not capture all the 

dynamics, especially at high angles of attack or during rapid maneuvering where nonlinearity becomes significant. On 

the other hand, the use of both one and two-parameter continuations in controller gain proved useful in determining 

the controller’s effectiveness in eliminating the undesirable attractors that either degrade the aircraft’s handling 

qualities or lead to dynamics that are completely uncaptured by the linear model. Therefore, the information gained 

from the nonlinear frequency response will help determine whether the controller performs as predicted when 

implemented on the nonlinear model. The adoption of a periodically forced bifurcation and continuation method 
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approach also allows the contributions of any time-dependent phenomena in the model to be captured, which 

conventional equilibria solutions would not do. Frequency domain studies of nonlinear flight mechanics models are 

currently seldom considered in both industry and academia. However, we have shown that the technique provides 

useful insights, especially given the drive to move toward flight dynamics models that are extended to represent 

unsteady aerodynamic phenomena. 

The nonlinear dynamics in the frequency domain shown in a simple longitudinal aircraft model example are 

prominent at higher angles of attack as the aircraft enters the stall region, which has the potential for undesirable 

responses such as upsets and loss-of-control. Specifically, the frequency responses of the aircraft with and without a 

stability-augmentation controller have been assessed. Large discrepancies in gain and phase between the linear and 

nonlinear frequency responses are seen at low frequencies, where the influence of the phugoid mode is significant. In 

particular, the extra resonances below the phugoid frequency and the large-amplitude period-2 motion are undetected 

by the linear model. A controller operating in the period-2 region may perform inadequately if the gain is not 

sufficiently large or go completely out of phase and cause much larger responses than predicted if it is operated in the 

subharmonic resonance region. It should be noted that the polynomial model used in this study was defined to represent 

the marginal phugoid stability of the full GTM at medium angle of attack, so it is expected that nonlinear behaviors 

are only observed at low frequencies, and that the model is not particularly representative of the other flight dynamics 

modes. However, the techniques proposed can be employed on more complex industrial-standard models as seen in 

the brief analysis of the full GTM, which shows the potential of the method on highly nonlinear applications where 

modal interactions between different elements of the system are significant. 
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