17 research outputs found
Effects of Sleep Deprivation on the Brain Electrical Activity in Mice
Sleep plays a crucial role in maintaining brain health. Insufficient sleep leads to an enhanced permeability of the blood–brain barrier and the development of diseases of small cerebral vessels. In this study, we discuss the possibility of detecting changes in the electrical activity of the brain associated with sleep deficit, using an extended detrended fluctuation analysis (EDFA). We apply this approach to electroencephalograms (EEG) in mice to identify signs of changes that can be caused by short-term sleep deprivation (SD). Although the SD effect is usually subject-dependent, analysis of a group of animals shows the appearance of a pronounced decrease in EDFA scaling exponents, describing power-law correlations and the impact of nonstationarity as a fairly typical response. Using EDFA, we revealed an SD effect in 9 out of 10 mice (Mann–Whitney test, p<0.05) that outperforms the DFA results (7 out of 10 mice). This tool may be a promising method for quantifying SD-induced pathological changes in the brain
Magnetic Nanoparticles Aggregation in Magnetic Gel Studied by Electron Magnetic Resonance (EMR)
Aggregation of magnetic nanoparticles immobilized in polymer gels was studied by ferromagnetic resonance and paramagnetic sensor techniques. Ferromagnetic resonance spectra of magnetic gels prepared in the presence of external magnetic field of 1.5 kG were compared to the spectra of gels synthesized in the absence of a magnetic field. Application of a magnetic field led to formation of linear aggregates of magnetic particles in the polymer matrix. The aggregates did not come apart after the field was switched off. The fraction of aggregated particles (of 62(6)%) and aspect ratio (elongation) of the aggregates (12.6(1.3)) was determined using paramagnetic sensor technique
Night Photostimulation of Clearance of Beta-Amyloid from Mouse Brain: New Strategies in Preventing Alzheimer’s Disease
The deposition of amyloid-β (Aβ) in the brain is a risk factor for Alzheimer’s disease (AD). Therefore, new strategies for the stimulation of Aβ clearance from the brain can be useful in preventing AD. Transcranial photostimulation (PS) is considered a promising method for AD therapy. In our previous studies, we clearly demonstrated the PS-mediated stimulation of lymphatic clearing functions, including Aβ removal from the brain. There is increasing evidence that sleep plays an important role in Aβ clearance. Here, we tested our hypothesis that PS at night can stimulate Aβ clearance from the brain more effectively than PS during the day. Our results on healthy mice show that Aβ clearance from the brain occurs faster at night than during wakefulness. The PS course at night improves memory and reduces Aβ accumulation in the brain of AD mice more effectively than the PS course during the day. Our results suggest that night PS is a more promising candidate as an effective method in preventing AD than daytime PS. These data are an important informative platform for the development of new noninvasive and nonpharmacological technologies for AD therapy as well as for preventing Aβ accumulation in the brain of people with disorder of Aβ metabolism, sleep deficit, elderly age, and jet lag.Peer Reviewe