4 research outputs found

    Π‘Π˜ΠžΠ ΠΠ‘ΠŸΠ Π•Π”Π•Π›Π•ΠΠ˜Π• ΠŸΠžΠ›Π˜ΠœΠ•Π ΠΠžΠ™ Π’Π ΠΠΠ‘ΠŸΠžΠ Π’ΠΠžΠ™ ЀОРМЫ Π Π˜Π€ΠΠ‘Π£Π’Π˜ΠΠ

    Get PDF
    Background: One way to increase drug efficacy is to provide a drug delivery transport system to the target organ. A widely used method is to incorporate the drug in a biodegradable polymer composition with forming nanosized drug’s transport forms. Objective: Our aim was to investigate the tissue biodistribution of antibiotic rifabutin transport system based on lactic and glycolic acids copolymer, and to compare it with the pure substance of rifabutin. Methods: These substances were administered to two groups of rats intragastrically in the doses of 10Β mg/kg. After a certain period of time, the animals were sacrificed by cervical dislocation. Samples preparation for analysis was carried out of the liquid-liquid extraction. Active substance’s concentrations were measured by high performance liquid chromatography method. Results: The study included 8-week-aged Wistar rats of both sexes weighing 0.22Β±0.02 kg. Animals were divided into 2 groups. The study group received polymer form of antibiotic, and the comparison group received substance of rifabutin. In intervals of 10 min, 30 min, 1 h, 2 h, 4 h, 7 h, 15 h, 24 h after drug administration liver, lung, spleen, kidney, intestines, stomach, heart and brain were resected respectively. Organs were measured by their weight. The drug was not detected in the brain. Rifabutin was determined in other examined tissues within 10 minutes and the maximum drug concentration in organs was fixed in 1.5–3.5 hours after administration. The rifabutin concentrations defined in the lungs were significantly higher in polymer form (pΒ 0.05). The polymer form’s distribution coefficient was higher in the liver and lungs (15.83 and 10.14Β ΞΌg/g respectively) in comparison with the substance one. The minimum amount of the active ingredient was observed in the heart (0.02Β ΞΌg/g). Conclusion: It is shown that the inclusion of the drug in a polymeric form substantially alters its localization in organs and tissues. Extensive biodistribution nanorifabutin in lung tissue, liver and spleen is established.  Одним ΠΈΠ· Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ увСличСния эффСктивности лСкарствСнных срСдств являСтся созданиС транспортной систСмы доставки лСкарств Π² Ρ†Π΅Π»Π΅Π²ΠΎΠΉ ΠΎΡ€Π³Π°Π½. Π¨ΠΈΡ€ΠΎΠΊΠΎ распространСнный ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ β€” Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ лСкарствСнного вСщСства Π² состав Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π° с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠΉ транспортной Ρ„ΠΎΡ€ΠΌΡ‹ лСкарства. ЦСль исслСдования: ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ биораспрСдСлСниС ΠΏΠΎ тканям транспортной систСмы Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ° Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π° Π½Π° основС сополимСра ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΈ Π³Π»ΠΈΠΊΠΎΠ»Π΅Π²ΠΎΠΉ кислоты, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ Π΅Π΅ с чистой субстанциСй Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π°. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠ΅Ρ€ΠΎΡ€Π°Π»ΡŒΠ½ΠΎ, Ρ‡Π΅Ρ€Π΅Π· атравматичСский мСталличСский Π·ΠΎΠ½Π΄ Π² Π΄ΠΎΠ·Π΅ 10Β ΠΌΠ³/ΠΊΠ³. Π”Π°Π»Π΅Π΅ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… умСрщвляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ дислокации ΡˆΠ΅ΠΉΠ½Ρ‹Ρ… ΠΏΠΎΠ·Π²ΠΎΠ½ΠΊΠΎΠ². ΠŸΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρƒ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»Π°ΡΡŒ ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ-Тидкостной экстракциСй. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства измСряли с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄Π° высокоэффСктивной Тидкостной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: Π² исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ Π²ΠΎΡΡŒΠΌΠΈΠ½Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… крыс Π»ΠΈΠ½ΠΈΠΈ Wistar ΠΎΠ±ΠΎΠ΅Π³ΠΎ ΠΏΠΎΠ»Π° массой 0,22Β±0,02Β ΠΊΠ³. Π–ΠΈΠ²ΠΎΡ‚Π½Ρ‹Π΅ Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° 2 Π³Ρ€ΡƒΠΏΠΏΡ‹. Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΠ°Ρ Π³Ρ€ΡƒΠΏΠΏΠ° ΠΏΠΎΠ»ΡƒΡ‡Π°Π»Π° Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊ Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, Π° Π³Ρ€ΡƒΠΏΠΏΠ° сравнСния ΠΏΠΎΠ»ΡƒΡ‡Π°Π»Π° ΡΡƒΠ±ΡΡ‚Π°Π½Ρ†ΠΈΡŽ Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π°. Π§Π΅Ρ€Π΅Π· Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹ 10Β ΠΌΠΈΠ½, 30Β ΠΌΠΈΠ½, 1Β Ρ‡, 2Β Ρ‡, 4Β Ρ‡, 7Β Ρ‡, 15Β Ρ‡, 24Β Ρ‡ послС ввСдСния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ Ρ€Π΅Π·Π΅ΠΊΡ†ΠΈΡŽ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, Π»Π΅Π³ΠΊΠΈΡ…, сСлСзСнки, ΠΏΠΎΡ‡Π΅ΠΊ, ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°, ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ°, сСрдца ΠΈ ΠΌΠΎΠ·Π³Π°, соотвСтствСнно, ΠΈ измСряли ΠΈΡ… массу. Π’ ΠΌΠΎΠ·Π³Π΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ Π½Π΅ обнаруТивался. Π’ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдуСмых тканях Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½ опрСдСлялся ΡƒΠΆΠ΅ Ρ‡Π΅Ρ€Π΅Π· 10Β ΠΌΠΈΠ½ послС ввСдСния, Π° максимальная концСнтрация ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π΄ΠΎΡΡ‚ΠΈΠ³Π°Π»Π°ΡΡŒ Π² ΠΎΡ€Π³Π°Π½Π°Ρ… спустя 1,5–3,5Β Ρ‡. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π°, опрСдСляСмыС Π² Π»Π΅Π³ΠΊΠΈΡ…, оказались статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎ (pΒ 0,05) Π²Ρ‹ΡˆΠ΅ послС ввСдСния ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ распрСдСлСния ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ Π² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ Π»Π΅Π³ΠΊΠΈΡ… Π±Ρ‹Π» ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ (15,83 ΠΈ 10,14Β ΠΌΠΊΠ³/Π³, соотвСтствСнно) ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с субстанциСй. МинимальноС количСство (0,02Β ΠΌΠΊΠ³/Π³) Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства наблюдали Π² сСрдцС. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π° Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ измСняСт Π΅Π³ΠΎ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΏΠΎ ΠΎΡ€Π³Π°Π½Π°ΠΌ ΠΈ тканям. УстановлСно ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠ΅ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π° Π² Ρ‚ΠΊΠ°Π½ΠΈ Π»Π΅Π³ΠΊΠΈΡ…, ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ сСлСзСнки.

    Parity Mixed Doublets in A = 36 Nuclei

    Full text link
    The Ξ³\gamma-circular polarizations (PΞ³P_{\gamma}) and asymmetries (AΞ³A_{\gamma}) of the parity forbidden M1 + E2 Ξ³\gamma-decays: 36Clβˆ—(JΟ€=2βˆ’;T=1;Ex=1.95^{36}Cl^{\ast} (J^{\pi} = 2^{-}; T = 1; E_{x} = 1.95 MeV) β†’\rightarrow 36Cl(JΟ€=2+;T=1;g.s.)^{36}Cl (J^{\pi} = 2^{+}; T = 1; g.s.) and 36Arβˆ—(JΟ€=2βˆ’;T=0;Ex=4.97^{36}Ar^{\ast} (J^{\pi} = 2^{-}; T = 0; E_{x} = 4.97 MeV) β†’\rightarrow 36Arβˆ—(JΟ€=2+;T=0;Ex=1.97^{36}Ar^{\ast} (J^{\pi} = 2^{+}; T = 0; E_{x} = 1.97 MeV) are investigated theoretically. We use the recently proposed Warburton-Becker-Brown shell-model interaction. For the weak forces we discuss comparatively different weak interaction models based on different assumptions for evaluating the weak meson-hadron coupling constants. The results determine a range of PΞ³P_{\gamma} values from which we find the most probable values: PΞ³P_{\gamma} = 1.1β‹…10βˆ’41.1 \cdot 10^{-4} for 36Cl^{36}Cl and PΞ³P_{\gamma} = 3.5β‹…10βˆ’43.5 \cdot 10^{-4} for 36Ar^{36}Ar.Comment: RevTeX, 17 pages; to appear in Phys. Rev.

    Mutation of Ser172 in Yeast Ξ² Tubulin Induces Defects in Microtubule Dynamics and Cell Division

    Get PDF
    Ser172 of Ξ² tubulin is an important residue that is mutated in a human brain disease and phosphorylated by the cyclin-dependent kinase Cdk1 in mammalian cells. To examine the role of this residue, we used the yeast S. cerevisiae as a model and produced two different mutations (S172A and S172E) of the conserved Ser172 in the yeast Ξ² tubulin Tub2p. The two mutants showed impaired cell growth on benomyl-containing medium and at cold temperatures, altered microtubule (MT) dynamics, and altered nucleus positioning and segregation. When cytoplasmic MT effectors Dyn1p or Kar9p were deleted in S172A and S172E mutants, cells were viable but presented increased ploidy. Furthermore, the two Ξ² tubulin mutations exhibited synthetic lethal interactions with Bik1p, Bim1p or Kar3p, which are effectors of cytoplasmic and spindle MTs. In the absence of Mad2p-dependent spindle checkpoint, both mutations are deleterious. These findings show the importance of Ser172 for the correct function of both cytoplasmic and spindle MTs and for normal cell division

    Syntheses and Biological Activities of Chroman-2-ones. A Review

    No full text
    corecore