45 research outputs found

    The role of cholesterol and mitochondrial bioenergetics in activation of the inflammasome in IBD

    Get PDF
    Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function

    IL-33 alarmin and its active proinflammatory fragments are released in small intestine in Celiac disease

    Get PDF
    Initially described as Th2 promoter cytokine, more recently, IL-33 has been recognized as an alarmin, mainly in epithelial and endothelial cells. While localized in the nucleus acts as a gene regulator, it can be also released after injury, stress or inflammatory cell death. As proinflammatory signal, IL-33 binds to the surface receptor ST2, which enhances mast cell, Th2, regulatory T cell, andinnate lymphoid cell type 2 functions. Besides these Th2 roles, free IL-33 can activate CD8+ T cells during ongoing Th1 immune responses to potentiate its cytotoxic function. Celiac Disease (CD) is a chronic inflammatory disorder characterized by a predominant Th1 response responsible for multiple pathways of mucosal damage in the proximal small intestine. By immunofluorescence and western blot analysis of duodenal tissues, we found an increased expression of IL-33 in duodenal mucosa of active CD (ACD) patients. Particularly, locally digested IL-33 releases active 18/21kDa fragments which can contribute to expand the proinflammatory signal. Endothelial (CD31+) and mesenchymal, myofibroblast and pericytes, cells from microvascular structures in villi and crypts, showed IL-33 nuclear location; while B cells (CD20+) showed a strong cytoplasmic staining.Both ST2 forms, ST2L and sST2, were also upregulated in duodenal mucosa of CD patients. This was accompanied by increased number of CD8+ST2+ T cells and the expression of T-bet in some ST2+ intraepithelial lymphocytes and lamina propria cells. IL-33 and sST2 mRNA levels correlated with IRF1, an IFN induced factor relevant in responses to viral infections and interferon mediatedproinflammatory responses highly represented in duodenal tissues in ACD. These findings highlight the potential contribution of IL-33 and its fragments to exacerbate the proinflammatory circuit and potentiate the cytotoxic activity of CD8+ T cells in CD pathology.Fil: Perez, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Ruera, Carolina Naymé. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Miculán, Emanuel Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Carasi, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Dubois Camacho, Karen. Universidad de Chile. Facultad de Medicina. Institutos de Ciencias Biomedicas.; ChileFil: Garbi, Laura. Provincia de Buenos Aires. Hospital Interzonal General de Agudos Gral. San Martín; ArgentinaFil: Guzman, Luciana. Provincia de Buenos Aires. Ministerio de Salud. Hospital de Niños "Sor María Ludovica" de La Plata; ArgentinaFil: Hermoso, Marcela A.. Universidad de Chile. Facultad de Medicina. Institutos de Ciencias Biomedicas.; ChileFil: Chirdo, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentin

    Regulation of the Intestinal Extra-Adrenal Steroidogenic Pathway Component LRH-1 by Glucocorticoids in Ulcerative Colitis

    Get PDF
    Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) and can be treated with glucocorticoids (GC), although some patients are unresponsive to this therapy. The transcription factor LRH-1/NR5A2 is critical to intestinal cortisol production (intestinal steroidogenesis), being reduced in UC patients. However, the relationship between LRH-1 expression and distribution with altered corticosteroid responses is unknown. To address this, we categorized UC patients by their steroid response. Here, we found that steroid-dependent and refractory patients presented reduced glucocorticoid receptor (GR)-mediated intestinal steroidogenesis compared to healthy individuals and responder patients, possibly related to increased colonic mucosa GR isoform beta (GR beta) content and cytoplasmic LRH-1 levels in epithelial and lamina propria cells. Interestingly, an intestinal epithelium-specific GR-induced knockout (GR(iKO)) dextran sodium sulfate (DSS)-colitis mice model presented decreased epithelial LRH-1 expression, whilst it increased in the lamina propria compared to DSS-treated control mice. Mechanistically, GR directly induced NR5A2 gene expression in CCD841CoN cells and human colonic organoids. Furthermore, GR bound to two glucocorticoid-response elements within the NR5A2 promoter in dexamethasone-stimulated CCD841CoN cells. We conclude that GR contributes to intestinal steroidogenesis by inducing LRH-1 in epithelial cells, suggesting LRH-1 as a potential marker for glucocorticoid-impaired response in UC. However, further studies with a larger patient cohort will be necessary to confirm role of LRH-1 as a therapeutic biomarker

    Pictolysin-III, a Hemorrhagic Type-III Metalloproteinase Isolated from Bothrops pictus (Serpentes: Viperidae) Venom, Reduces Mitochondrial Respiration and Induces Cytokine Secretion in Epithelial and Stromal Cell Lines

    Get PDF
    From the venom of the Bothrops pictus snake, an endemic species from Peru, we recently have described toxins that inhibited platelet aggregation and cancer cell migration. In this work, we characterize a novel P-III class snake venom metalloproteinase, called pictolysin-III (Pic-III). It is a 62 kDa proteinase that hydrolyzes dimethyl casein, azocasein, gelatin, fibrinogen, and fibrin. The cations Mg2+ and Ca2+ enhanced its enzymatic activity, whereas Zn2+ inhibited it. In addition, EDTA and marimastat were also effective inhibitors. The amino acid sequence deduced from cDNA shows a multidomain structure that includes a proprotein, metalloproteinase, disintegrin-like, and cysteine-rich domains. Additionally, Pic-III reduces the convulxin- and thrombin-stimulated platelet aggregation and in vivo, it has hemorrhagic activity (DHM = 0.3 µg). In epithelial cell lines (MDA-MB-231 and Caco-2) and RMF-621 fibroblast, it triggers morphological changes that are accompanied by a decrease in mitochondrial respiration, glycolysis, and ATP levels, and an increase in NAD(P)H, mitochondrial ROS, and cytokine secretion. Moreover, Pic-III sensitizes to the cytotoxic BH3 mimetic drug ABT-199 (Venetoclax) in MDA-MB-231 cells. To our knowledge, Pic-III is the first SVMP reported with action on mitochondrial bioenergetics and may offer novel opportunities for promising lead compounds that inhibit platelet aggregation or ECM–cancer-cell interactions.</p

    Impact of MICA 3′UTR allelic variability on miRNA binding prediction, a bioinformatic approach

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that participate as powerful genetic regulators. MiRNAs can interfere with cellular processes by interacting with a broad spectrum of target genes under physiological and pathological states, including cancer development and progression. Major histocompatibility complex major histocompatibility complex class I-related chain A (MICA) belongs to a family of proteins that bind the natural-killer group 2, member D (NKG2D) receptor on Natural Killer cells and other cytotoxic lymphocytes. MICA plays a crucial role in the host’s innate immune response to several disease settings, including cancer. MICA harbors various single nucleotide polymorphisms (SNPs) located in its 3′-untranslated region (3′UTR), a characteristic that increases the complexity of MICA regulation, favoring its post-transcriptional modulation by miRNAs under physiological and pathological conditions. Here, we conducted an in-depth analysis of MICA 3′UTR sequences according to each MICA allele described to date using NCBI database. We also systematically evaluated interactions between miRNAs and their putative targets on MICA 3′UTR containing SNPs using in silico analysis. Our in silico results showed that MICA SNPs rs9266829, rs 1880, and rs9266825, located in the target sequence of miRNAs hsa-miR-106a-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-93, hsa-miR-1207.5p, and hsa-miR-711 could modify the binding free energy between −8.62 and −18.14 kcal/mol, which may affect the regulation of MICA expression. We believe that our results may provide a starting point for further exploration of miRNA regulatory effects depending on MICA allelic variability; they may also be a guide to conduct miRNA in silico analysis for other highly polymorphic genes.</p

    Hypoglycemia and glycemic variability of people with type 1 diabetes with lower and higher physical activity loads in free-living conditions using continuous subcutaneous insulin infusion with predictive low-glucose suspend system

    No full text
    Introduction Maintaining glycemic control during and after physical activity (PA) is a major challenge in type 1 diabetes (T1D). This study compared the glycemic variability and exercise-related diabetic management strategies of adults with T1D achieving higher and lower PA loads in nighttime–daytime and active– sedentary behavior hours in free-living conditions.Research design and methods Active adults (n=28) with T1D (ages: 35±10 years; diabetes duration: 21±11 years; body mass index: 24.8±3.4 kg/m2; glycated hemoglobin A1c: 6.9±0.6%) on continuous subcutaneous insulin delivery system with predictive low glucose suspend system and glucose monitoring, performed different types, duration and intensity of PA under free-living conditions, tracked by accelerometer over 14 days. Participants were equally divided into lower load (LL) and higher load (HL) by median of daily counts per minute (61122). Glycemic variability was studied monitoring predefined time in glycemic ranges (time in range (TIR), time above range (TAR) and time below range (TBR)), coefficient of variation (CV) and mean amplitude of glycemic excursions (MAGE). Parameters were studied in defined hours timeframes (nighttime–daytime and active–sedentary behavior). Self-reported diabetes management strategies were analysed during and post-PA.Results Higher glycemic variability (CV) was observed in sedentary hours compared with active hours in the LL group (p≤0.05). HL group showed an increment in glycemic variability (MAGE) during nighttime versus daytime (p≤0.05). There were no differences in TIR and TAR across all timeframes between HL and LL groups. The HL group had significantly more TBR during night hours than the LL group (p≤0.05). Both groups showed TBR above recommended values. All participants used fewer post-PA management strategies than during PA (p≤0.05).Conclusion Active people with T1D are able to maintain glycemic variability, TIR and TAR within recommended values regardless of PA loads. However, the high prevalence of TBR and the less use of post-PA management strategies highlights the potential need to increase awareness on actions to avoid glycemic excursions and hypoglycemia after exercise completion

    The role of cholesterol and mitochondrial bioenergetics in activation of the inflammasome in IBD

    Get PDF
    Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function
    corecore