12,391 research outputs found

    Prototype ultrasonic instrument for quantitative testing

    Get PDF
    Ultrasonic instrument has been developed for use in quantitative nondestructive evaluation of material defects such as cracks, voids, inclusions, and unbonds. Instrument is provided with standard pulse source and transducer for each frequency range selected and includes integral aids that allow calibration to prescribed standards

    BRS Cohomology of the Supertranslations in D=4

    Full text link
    Supersymmetry transformations are a kind of square root of spacetime translations. The corresponding Lie superalgebra always contains the supertranslation operator δ=cασαβ˙μcβ˙(ϵμ) \delta = c^{\alpha} \sigma^{\mu}_{\alpha \dot \beta} {\overline c}^{\dot \beta} (\epsilon^{\mu})^{\dag} . We find that the cohomology of this operator depends on a spin-orbit coupling in an SU(2) group and has a quite complicated structure. This spin-orbit type coupling will turn out to be basic in the cohomology of supersymmetric field theories in general.Comment: 14 pages, CTP-TAMU-13/9

    Algebraic characterization of the Wess-Zumino consistency conditions in gauge theories

    Full text link
    A new way of solving the descent equations corresponding to the Wess-Zumino consistency conditions is presented. The method relies on the introduction of an operator δ\delta which allows to decompose the exterior space-time derivative dd as a BRSBRS commutator. The case of the Yang-Mills theories is treated in detail.Comment: 16 pages, UGVA-DPT 1992/08-781 to appear in Comm. Math. Phy

    Local methylthiolate adsorption geometry on Au(111) from photoemission core-level shifts

    Get PDF
    The local adsorption structure of methylthiolate in the ordered Au(111)-(√3×√3)R30° phase has been investigated using core-level-shift measurements of the surface and bulk components of the Au 4f7/2 photoelectron binding energy. The amplitude ratio of the core-level-shift components associated with surface Au atoms that are, and are not, bonded to the thiolate is found to be compatible only with the previously proposed Au-adatom-monothiolate moiety in which the thiolate is bonded atop Au adatoms in hollow sites, and not on an unreconstructed surface, or in Au-adatom-dithiolate species

    Algebraic structure of gravity in Ashtekar variables

    Get PDF
    The BRST transformations for gravity in Ashtekar variables are obtained by using the Maurer-Cartan horizontality conditions. The BRST cohomology in Ashtekar variables is calculated with the help of an operator δ\delta introduced by S.P. Sorella, which allows to decompose the exterior derivative as a BRST commutator. This BRST cohomology leads to the differential invariants for four-dimensional manifolds.Comment: 19 pages, report REF. TUW 94-1

    A measurement-based measure of the size of macroscopic quantum superpositions

    Full text link
    Recent experiments claiming formation of quantum superposition states in near macroscopic sys- tems raise the question of how the sizes of general quantum superposition states in an interacting system are to be quantified. We propose here a measure of size for such superposition states that is based on what measurements can be performed to probe and distinguish the different branches of the state. The measure allows comparison of the effective size for superposition states in very different physical systems. It can be applied to a very general class of superposition states and reproduces known results for near-ideal cases. Comparison with a prior measure based on analy- sis of coherence between branches indicates that significantly smaller effective superposition sizes result from our measurement-based measure. Application to a system of interacting bosons in a double-well trapping potential shows that the effective superposition size is strongly dependent on the relative magnitude of the barrier height and interparticle interaction.Comment: 21 pages, 20 figures. Accepted by Phys. Rev. A. Replaced old version with accepted version. Significant changes and improvements, particularly to section on 1-particle measurement

    Yang-Mills gauge anomalies in the presence of gravity with torsion

    Full text link
    The BRST transformations for the Yang-Mills gauge fields in the presence of gravity with torsion are discussed by using the so-called Maurer-Cartan horizontality conditions. With the help of an operator \d which allows to decompose the exterior spacetime derivative as a BRST commutator we solve the Wess-Zumino consistency condition corresponding to invariant Chern-Simons terms and gauge anomalies.Comment: 24 pages, report REF. TUW 94-1

    Vibrational dynamics of confined granular material

    Get PDF
    By means of two-dimensional contact dynamics simulations, we analyze the vibrational dynamics of a confined granular layer in response to harmonic forcing. We use irregular polygonal grains allowing for strong variability of solid fraction. The system involves a jammed state separating passive (loading) and active (unloading) states. We show that an approximate expression of the packing resistance force as a function of the displacement of the free retaining wall from the jamming position provides a good description of the dynamics. We study in detail the scaling of displacements and velocities with loading parameters. In particular, we find that, for a wide range of frequencies, the data collapse by scaling the displacements with the inverse square of frequency, the inverse of the force amplitude and the square of gravity. Interestingly, compaction occurs during the extension of the packing, followed by decompaction in the contraction phase. We show that the mean compaction rate increases linearly with frequency up to a characteristic frequency and then it declines in inverse proportion to frequency. The characteristic frequency is interpreted in terms of the time required for the relaxation of the packing through collective grain rearrangements between two equilibrium states

    Low temperature transition to a superconducting phase in boron-doped silicon films grown on (001)-oriented silicon wafers

    Full text link
    We report on a detailed analysis of the superconducting properties of boron-doped silicon films grown along the 001 direction by Gas Immersion Laser Doping. The doping concentration cB has been varied up to approx. 10 at.% by increasing the number of laser shots to 500. No superconductivity could be observed down to 40mK for doping level below 2.5 at.%. The critical temperature Tc then increased steeply to reach 0.6K for cB = 8 at%. No hysteresis was found for the transitions in magnetic field, which is characteristic of a type II superconductor. The corresponding upper critical field Hc2(0) was on the order of 1000 G, much smaller than the value previously reported by Bustarret et al. in Nature (London) 444, 465 (2006).Comment: 4 pages including 4 figures, submitted to PRB-Rapid Communicatio
    corecore