28 research outputs found

    Extinction and the Dimming of KIC 8462852

    Full text link
    To test alternative hypotheses for the behavior of KIC 8462852, we obtained measurements of the star over a wide wavelength range from the UV to the mid-infrared from October 2015 through December 2016, using Swift, Spitzer and at AstroLAB IRIS. The star faded in a manner similar to the long-term fading seen in Kepler data about 1400 days previously. The dimming rate for the entire period reported is 22.1 +\- 9.7 milli-mag/yr in the Swift wavebands, with amounts of 21.0 +\- 4.5 mmag in the groundbased B measurements, 14.0 +\- 4.5 mmag in V, and 13.0 +\- 4.5 in R, and a rate of 5.0 +\- 1.2 mmag/yr averaged over the two warm Spitzer bands. Although the dimming is small, it is seen at >= 3 sigma by three different observatories operating from the UV to the IR. The presence of long-term secular dimming means that previous SED models of the star based on photometric measurements taken years apart may not be accurate. We find that stellar models with T_{eff} = 7000 - 7100 K and A_V ~ 0.73 best fit the Swift data from UV to optical. These models also show no excess in the near-simultaneous Spitzer photometry at 3.6 and 4.5 microns, although a longer wavelength excess from a substantial debris disk is still possible (e.g., as around Fomalhaut). The wavelength dependence of the fading favors a relatively neutral color (i.e., R_V >= 5, but not flat across all the bands) compared with the extinction law for the general ISM (R_V = 3.1), suggesting that the dimming arises from circumstellar material.Comment: accepted by the Astrophysical Journal; acknowledgements revised 9/1/201

    NSV 1907 - a new eclipsing, nova-like cataclysmic variable

    Get PDF
    NSV 1907, formerly listed as an irregular variable in variability catalogues, was classified as an Algol-type eclipsing binary in the Catalina Surveys Periodic Variable Star Catalogue. We have identified NSV 1907 as an ultraviolet (UV) bright source using measurements from the GALEX space telescope and detected obvious out-of-eclipse variability in archival photometric data from the Catalina Sky Survey, which instigated a closer examination of the object. A spectrum and extensive multicolour photometric observations were acquired, from which we deduce that NSV 1907 is a deeply eclipsing, nova-like cataclysmic variable. Apart from the orbital variations (deep eclipses with a period of P ≈ 6.63 hours), changes in mean brightness and irregular short-term variability (flickering) were observed. The presence of a secondary minimum at phase φ ≈ 0.5 was established, which indicates a significant contribution of the companion star to the optical flux of the system. We find possible evidence for sinusoidal variations with a period of P ≈ 4.2 d, which we interpret as the nodal precession period of the accretion disc. No outbursts or VY Scl-like drops in brightness were detected either by the CSS or during our photometric monitoring. Because of its spectral characteristics and the observed variability pattern, we propose NSV 1907 as a new moderately bright long-period SW Sextantis star. Further photometric and spectroscopic observations are encouraged

    The KIC 8462852 light curve from 2015.75 to 2018.18 shows a variable secular decline

    Get PDF
    The star KIC 8462852 (Boyajian's Star) displays both fast dips of up to 20% on time scales of days, plus long-term secular fading by up to 19% on time scales from a year to a century. We report on CCD photometry of KIC 8462852 from 2015.75 to 2018.18, with 19,176 images making for 1,866 nightly magnitudes in BVRI. Our light curves show a continuing secular decline (by 0.023±0.003 mags in the B-band) with three superposed dips with duration 120-180 days. This demonstrates that there is a continuum of dip durations from a day to a century, so that the secular fading is seen to be by the same physical mechanism as the short-duration Kepler dips. The BVRI light curves all have the same shape, with the slopes and amplitudes for VRI being systematically smaller than in the B-band by factors of 0.77±0.05, 0.50±0.05, and 0.31±0.05. We rule out any hypothesis involving occultation of the primary star by any star, planet, solid body, or optically thick cloud. But these ratios are the same as that expected for ordinary extinction by dust clouds. This chromatic extinction implies dust particle sizes going down to ˜0.1 micron, suggesting that this dust will be rapidly blown away by stellar radiation pressure, so the dust clouds must have formed within months. The modern infrared observations were taken at a time when there was at least 12.4%±1.3% dust coverage (as part of the secular dimming), and this is consistent with dimming originating in circumstellar dust

    Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. VIII: The Eighth Year (2015-2016)

    Full text link
    Continuing the project described by Kato et al. (2009, arXiv:0905.1757), we collected times of superhump maxima for 128 SU UMa-type dwarf novae observed mainly during the 2015-2016 season and characterized these objects. The data have improved the distribution of orbital periods, the relation between the orbital period and the variation of superhumps, the relation between period variations and the rebrightening type in WZ Sge-type objects. Coupled with new measurements of mass ratios using growing stages of superhumps, we now have a clearer and statistically greatly improved evolutionary path near the terminal stage of evolution of cataclysmic variables. Three objects (V452 Cas, KK Tel, ASASSN-15cl) appear to have slowly growing superhumps, which is proposed to reflect the slow growth of the 3:1 resonance near the stability border. ASASSN-15sl, ASASSN-15ux, SDSS J074859.55+312512.6 and CRTS J200331.3-284941 are newly identified eclipsing SU UMa-type (or WZ Sge-type) dwarf novae. ASASSN-15cy has a short (~0.050 d) superhump period and appears to belong to EI Psc-type objects with compact secondaries having an evolved core. ASASSN-15gn, ASASSN-15hn, ASASSN-15kh and ASASSN-16bu are candidate period bouncers with superhump periods longer than 0.06 d. We have newly obtained superhump periods for 79 objects and 13 orbital periods, including periods from early superhumps. In order that the future observations will be more astrophysically beneficial and rewarding to observers, we propose guidelines how to organize observations of various superoutbursts.Comment: 123 pages, 162 figures, 119 tables, accepted for publication in PASJ (including supplementary information

    An Asymmetric Eclipse Seen toward the Pre-main-sequence Binary System V928 Tau

    Get PDF
    K2 observations of the weak-lined T Tauri binary V928 Tau A and B show the detection of a single, asymmetric eclipse, which may be due to a previously unknown substellar companion eclipsing one component of the binary with an orbital period >66 days. Over an interval of about 9 hr, one component of the binary dims by around 60%, returning to its normal brightness about 5 hr later. From modeling of the eclipse shape, we find evidence that the eclipsing companion may be surrounded by a disk or a vast ring system. The modeled disk has a radius of 0.9923 ± 0.0005 R*, with an inclination of 56 78 ± 0 03, a tilt of 41 22 ± 0 05, an impact parameter of −0.2506 ± 0.0002 R*, and an opacity of 1.00. The occulting disk must also move at a transverse velocity of 6.637 ± 0.002 R* day⁻¹, which, depending on whether it orbits V928 Tau A or B, corresponds to approximately 73.53 or 69.26 km s⁻¹. A search in ground-based archival data reveals additional dimming events, some of which suggest periodicity, but no unambiguous period associated with the eclipse observed by K2. We present a new epoch of astrometry that is used to further refine the orbit of the binary, presenting a new lower bound of 67 yr, and constraints on the possible orbital periods of the eclipsing companion. The binary is also separated by 18'' (~2250 au) from the lower-mass CFHT-BD-Tau 7, which is likely associated with V928 Tau A and B. We also present new high-dispersion optical spectroscopy that we use to characterize the unresolved stellar binary

    KELT-23Ab: A Hot Jupiter Transiting a Near-solar Twin Close to the TESS and JWST Continuous Viewing Zones

    Get PDF
    We announce the discovery of KELT-23Ab, a hot Jupiter transiting the relatively bright (V = 10.3) star BD+66 911 (TYC 4187-996-1), and characterize the system using follow-up photometry and spectroscopy. A global fit to the system yields host-star properties of K, , , , (cgs), and . KELT-23Ab is a hot Jupiter with a mass of , radius of , and density of g cm-3. Intense insolation flux from the star has likely caused KELT-23Ab to become inflated. The time of inferior conjunction is and the orbital period is days. There is strong evidence that KELT-23A is a member of a long-period binary star system with a less luminous companion, and due to tidal interactions, the planet is likely to spiral into its host within roughly a gigayear. This system has one of the highest positive ecliptic latitudes of all transiting planet hosts known to date, placing it near the Transiting Planet Survey Satellite and James Webb Space Telescope continuous viewing zones. Thus we expect it to be an excellent candidate for long-term monitoring and follow up with these facilities

    Late Cretaceous Vicariance in Gondwanan Amphibians

    Get PDF
    Overseas dispersals are often invoked when Southern Hemisphere terrestrial and freshwater organism phylogenies do not fit the sequence or timing of Gondwana fragmentation. We used dispersal-vicariance analyses and molecular timetrees to show that two species-rich frog groups, Microhylidae and Natatanura, display congruent patterns of spatial and temporal diversification among Gondwanan plates in the Late Cretaceous, long after the presumed major tectonic break-up events. Because amphibians are notoriously salt-intolerant, these analogies are best explained by simultaneous vicariance, rather than by oceanic dispersal. Hence our results imply Late Cretaceous connections between most adjacent Gondwanan landmasses, an essential concept for biogeographic and palaeomap reconstructions
    corecore