1,910 research outputs found

    The exciton many-body theory extended to arbitrary composite bosons

    Full text link
    We have recently constructed a many-body theory for composite excitons, in which the possible carrier exchanges between NN excitons can be treated exactly through a set of dimensionless ``Pauli scatterings'' between two excitons. Many-body effects with excitons turn out to be rather simple because excitons are the exact one-electron-hole-pair eigenstates of the semiconductor Hamiltonian, thus forming a complete orthogonal set for one-pair states. It can however be of interest to extend this new many-body theory to more complicated composite bosons, \emph{i. e.}, ``cobosons'', which are not necessarily the one-pair eigenstates of the system Hamiltonian, nor even orthogonal. The purpose of this paper is to derive the ``Pauli scatterings'' and the ``interaction scatterings'' of these cobosons formally, \emph{i. e.}, just in terms of their wave functions and the interaction potentials which exist between the fermions from which they are constructed. We also explain how to derive many-body effects in this very general system of composite bosons

    Role of Fermion Exchanges in Statistical Signatures of Composite Bosons

    Get PDF
    We study statistical signatures of composite bosons made of two fermions using a new many-body approach. Extending number-states to composite bosons, two-particle correlations as well as the dispersion of the probability distribution are analyzed. We show that the particle composite nature reduces the anti-bunching effect predicted for elementary bosons. Furthermore, the probability distribution exhibits a dispersion which is greater for composite bosons than for elementary bosons. This dispersion corresponds to the one of sub-Poissonian processes, as for a quantum state, but, unlike its elementary boson counterpart, it is not minimum. In general, our work shows that it is necessary to take into account the Pauli exclusion principle which takes place between fermionic components of composite bosons - along the line here used - to possibly extract statistical properties in a precise way.Comment: 14 page

    Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)

    Get PDF
    A study has been performed to evaluate the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of the fuel-conserving alternatives has been investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000

    Optical signatures of a fully dark exciton condensate

    Full text link
    We propose optical means to reveal the presence of a dark exciton condensate that does not yield any photoluminescence at all. We show that (i) the dark exciton density can be obtained from the blueshift of the excitonic absorption line induced by dark excitons; (ii) the polarization of the dark condensate can be deduced from the blueshift dependence on probe photon polarization and also from Faraday effect, linearly polarized dark excitons leaving unaffected the polarization plane of an unabsorbed photon beam. These effects result from carrier exchanges between dark and bright excitons.Comment: 5 pages, 4 figure

    Effects of fermion exchanges on the polarization of exciton condensates

    Get PDF
    Exchange processes are responsible for the stability of elementary boson condensates with respect to their possible fragmentation. This remains true for composite bosons when single fermion exchanges are included but spin degrees of freedom are ignored. We here show that their inclusion can produce a "spin-fragmentation" of a condensate of dark excitons, i.e., an unpolarized condensate with equal amount of dark excitons with spins (+2) and (-2). Quite surprisingly, for spatially indirect excitons of semiconductor bilayers, we predict that the condensate polarization can switch from unpolarized to fully polarized, depending on the distance between the layers confining electrons and holes. Remarkably, the threshold distance associated to this switching lies in the regime where experiments are nowadays carried out.Comment: 5 pages, 1 figur
    • …
    corecore