615 research outputs found

    Glass transition in self organizing cellular patterns

    Full text link
    We have considered the dynamical evolution of cellular patterns controlled by a stochastic Glauber process determined by the deviations of local cell topology from that of a crystalline structure. Above a critical temperature evolution is towards a common equilibrium state from any initial configuration, but beneath this temperature there is a dynamical phase transition, with a start from a quasi-random state leading to non-equilibrium glassy freezing whereas an ordered start rests almost unchanged. A temporal persistence function decays exponentially in the high temperature equilibrating state but has a characteristic slow non-equilibrium aging-like behaviour in the low temperature glassy phase.Comment: Added references, text minor change

    Autocorrelation analysis for the unbiased determination of power-law exponents in single-quantum-dot blinking

    Full text link
    We present an unbiased and robust analysis method for power-law blinking statistics in the photoluminescence of single nano-emitters, allowing us to extract both the bright- and dark-state power-law exponents from the emitters' intensity autocorrelation functions. As opposed to the widely-used threshold method, our technique therefore does not require discriminating the emission levels of bright and dark states in the experimental intensity timetraces. We rely on the simultaneous recording of 450 emission timetraces of single CdSe/CdS core/shell quantum dots at a frame rate of 250 Hz with single photon sensitivity. Under these conditions, our approach can determine ON and OFF power-law exponents with a precision of 3% from a comparison to numerical simulations, even for shot-noise-dominated emission signals with an average intensity below 1 photon per frame and per quantum dot. These capabilities pave the way for the unbiased, threshold-free determination of blinking power-law exponents at the micro-second timescale

    Topological correlations and asymptotic freedom in cellular aggregates

    Full text link
    In random cellular systems, both observation and maximum entropy inference give a specific form to the topological pair correlation: it is bi-affine in the cells number of edges with coefficients depending on the distance between the two cells of the pair. Assuming this form for the pair correlations, we make explicit the conditions of statistical independence at large distance. When, on average, the defects do not contribute, the layer population and the enclosed topological charge both increase polynomially with distance. In dimension 2, the exponent of the leading terms depend on sum rules satisfied, or not, by the maximum entropy coefficients.Comment: Available online at http://www.sciencedirect.co

    Electron and hole g-factors and spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells

    Full text link
    We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman scattering and picosecond pump-probe Faraday rotation in magnetic fields up to 30 T. We show that at low temperatures the nanoplatelets are negatively charged so that their photoluminescence is dominated by radiative recombination of negatively charged excitons (trions). Electron g-factor of 1.68 is measured and heavy-hole g-factor varying with increasing magnetic field from -0.4 to -0.7 is evaluated. Hole g-factors for two-dimensional structures are calculated for various hole confining potentials for cubic- and wurtzite lattice in CdSe core. These calculations are extended for various quantum dots and nanoplatelets based on II-VI semiconductors. We developed a magneto-optical technique for the quantitative evaluation of the nanoplatelets orientation in ensemble

    Towards precision medicine:What are the stratification hypotheses to identify homogeneous inflammatory subgroups

    Get PDF
    Diverse lines of research testify a link, presumably causal, between immune dysregulation and the development, course and clinical outcome of psychiatric disorders. However, there is a large heterogeneity among the patients? individual immune profile and this heterogeneity prevents the development of precise diagnostic tools and the identification of therapeutic targets. The aim of this review was to delineate possible subgroups of patients on the basis of clinical dimensions, investigating whether they could lead to particular immune signatures and tailored treatments. We discuss six clinical entry points; genetic liability to immune dysregula-tion, childhood maltreatment, metabolic syndrome, cognitive dysfunction, negative symptoms and treatment resistance. We describe the associated immune signature and outline the effects of anti-inflammatory drugs so far. Finally, we discuss advantages of this approach, challenges and future research directions. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/

    Addressing the exciton fine structure in colloidal nanocrystals: the case of CdSe nanoplatelets

    Full text link
    We study the band-edge exciton fine structure and in particular its bright-dark splitting in colloidal semiconductor nanocrystals by four different optical methods based on fluorescence line narrowing and time-resolved measurements at various temperatures down to 2 K. We demonstrate that all these methods provide consistent splitting values and discuss their advances and limitations. Colloidal CdSe nanoplatelets with thicknesses of 3, 4 and 5 monolayers are chosen for experimental demonstrations. The bright-dark splitting of excitons varies from 3.2 to 6.0 meV and is inversely proportional to the nanoplatelet thickness. Good agreement between experimental and theoretically calculated size dependence of the bright-dark exciton slitting is achieved. The recombination rates of the bright and dark excitons and the bright to dark relaxation rate are measured by time-resolved techniques

    Крещение Крыма

    Get PDF
    Цель статьи - определить место и значение фестивной культуры в условиях социальных трансформаций

    Quasi-stationary regime of a branching random walk in presence of an absorbing wall

    Full text link
    A branching random walk in presence of an absorbing wall moving at a constant velocity vv undergoes a phase transition as the velocity vv of the wall varies. Below the critical velocity vcv_c, the population has a non-zero survival probability and when the population survives its size grows exponentially. We investigate the histories of the population conditioned on having a single survivor at some final time TT. We study the quasi-stationary regime for v<vcv<v_c when TT is large. To do so, one can construct a modified stochastic process which is equivalent to the original process conditioned on having a single survivor at final time TT. We then use this construction to show that the properties of the quasi-stationary regime are universal when vvcv\to v_c. We also solve exactly a simple version of the problem, the exponential model, for which the study of the quasi-stationary regime can be reduced to the analysis of a single one-dimensional map.Comment: 2 figures, minor corrections, one reference adde
    corecore