65 research outputs found

    Antibody Responses to a Novel Plasmodium falciparum Merozoite Surface Protein Vaccine Correlate with Protection against Experimental Malaria Infection in Aotus Monkeys

    Get PDF
    The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals

    In Situ Study on Ni–Mo Stability in a Water‐Splitting Device: Effect of Catalyst Substrate and Electric Potential

    No full text
    Nickel-molybdenum (Ni-Mo) alloys are well studied as highly effective electrocatalyst cathodes for water splitting. Understanding deactivation pathways is a key to improving the performance of these catalysts. In this study, in situ characterization by UV/Vis spectroscopy and AFM of the morphology and Mo leaching of an Ni-Mo electrocatalyst was performed with the goal of understanding the stability and related Mo leaching mechanism. Switching the potential towards higher overpotentials results in a nonlinear change in Mo leaching. Multiple processes are proposed to take place, such as a decrease in the extent of Mo oxidation at the cathode induced by more strongly reducing potentials, while simultaneously the increase in the local pH at the cathode due to the hydrogen evolution reaction causes more Mo leaching. The change in capacitance of these materials depends strongly on the change in surface composition and not only on the surface area. In situ UV/Vis spectroscopy showed that Mo leaching is a continuous process over the course of 4 h of operation. Finally, the material was deposited on different substrates and the effect on Ni-Mo stability was studied. The substrate has a significant, albeit complex, influence on the stability and activity of Ni-Mo cathodes. In terms of stability in 1 m KOH, Ni-Mo was found to be best deposited on stainless steel substrates operated at low overpotentials, on which it showed nearly no change in capacitance and exhibited low Mo leaching
    corecore