31 research outputs found

    The Kaleidoscope of Microglial Phenotypes

    Get PDF
    Gene expression analyses of microglia, the tissue-resident macrophages of the central nervous system (CNS), led to the identification of homeostatic as well as neurological disease-specific gene signatures of microglial phenotypes. Upon alterations in the neural microenvironment, either caused by local insults from within the CNS (during neurodegenerative diseases) or by macroenvironmental incidents, such as social stress, microglia can switch phenotypes-generally referred to as "microglial activation." The interplay between the microenvironment and its influence on microglial phenotypes, regulated by (epi) genetic mechanisms, can be imagined as the different colorful crystal formations (microglial phenotypes) that change upon rotation (microenvironmental changes) of a kaleidoscope. In this review, we will discuss microglial phenotypes in relation to neurodevelopment, homeostasis, in vitro conditions, aging, and neurodegenerative diseases based on transcriptome studies. By overlaying these disease-specific microglial signatures, recent publications have identified a specific set of genes that is differentially expressed in all investigated diseases, called a microglial core gene signature with multiple diseases. We will conclude this review with a discussion about the complexity of this microglial core gene signature associated with multiple diseases

    Intrinsic DNA damage repair deficiency results in progressive microglia loss and replacement

    Get PDF
    The DNA excision repair protein Ercc1 is important for nucleotide excision, double strand DNA break, and interstrand DNA crosslink repair. In constitutiveErcc1-knockout mice, microglia display increased phagocytosis, proliferation and an enhanced responsiveness to lipopolysaccharide (LPS)-induced peripheral inflammation. However, the intrinsic effects ofErcc1-deficiency on microglia are unclear. In this study,Ercc1was specifically deleted from Cx3cr1-expressing cells and changes in microglia morphology and immune responses at different times after deletion were determined. Microglia numbers were reduced with approximately 50% at 2-12 months afterErcc1deletion. Larger and more ramified microglia were observed followingErcc1deletion both in vivo and in organotypic hippocampal slice cultures.Ercc1-deficient microglia were progressively lost, and during this period, microglia proliferation was transiently increased.Ercc1-deficient microglia were gradually replaced by nondeficient microglia carrying a functionalErcc1allele. In contrast to constitutiveErcc1-deficient mice, microglia-specific deletion ofErcc1did not induce microglia activation or increase their responsiveness to a systemic LPS challenge. Gene expression analysis suggested thatErcc1deletion in microglia induced a transient aging signature, which was different from a priming or disease-associated microglia gene expression profile.</p

    Transcriptional profiling of macaque microglia reveals an evolutionary preserved gene expression program

    Get PDF
    Microglia are tissue-resident macrophages of the central nervous system (CNS), and important for CNS development and homeostasis. In the adult CNS, microglia monitor environmental changes and react to tissue damage, cellular debris, and pathogens. Here, we present a gene expression profile of purified microglia isolated from the rhesus macaque, a non-human primate, that consists of 666 transcripts. The macaque microglia transcriptome was intersected with the transcriptional programs of microglia from mouse, zebrafish, and human CNS tissues, to determine (dis)similarities. This revealed an extensive overlap of 342 genes between the transcriptional profile of macaque and human microglia, and showed that the gene expression profile of zebrafish is most distant when compared to other species. Furthermore, an evolutionair core based on the overlapping gene expression signature from all four species was identified. This study presents a macaque microglia transcriptomics profile, and identifies a gene expression program in microglia that is preserved across species, underscoring their CNS-tailored tissue macrophage functions as innate immune cells with CNS-surveilling properties

    Characterizing microglial gene expression in a model of secondary progressive multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is the most common inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. Chronic-relapsing experimental autoimmune encephalomyelitis (crEAE) in Biozzi ABH mice is an experimental model of MS. This crEAE model is characterized by an acute phase with severe neurological disability, followed by remission of disease, relapse of neurological disease and remission that eventually results in a chronic progressive phase that mimics the secondary progressive phase (SPEAE) of MS. In both MS and SPEAE, the role of microglia is poorly defined. We used a crEAE model to characterize microglia in the different phases of crEAE phases using morphometric and RNA sequencing analyses. At the initial, acute inflammation phase, microglia acquired a pro-inflammatory phenotype. At the remission phase, expression of standard immune activation genes was decreased while expression of genes associated with lipid metabolism and tissue remodeling were increased. Chronic phase microglia partially regain inflammatory gene sets and increase expression of genes associated with proliferation. Together, the data presented here indicate that microglia obtain different features at different stages of crEAE and a particularly mixed phenotype in the chronic stage. Understanding the properties of microglia that are present at the chronic phase of EAE will help to understand the role of microglia in secondary progressive MS, to better aid the development of therapies for this phase of the disease

    Profiling Microglia From Alzheimer's Disease Donors and Non-demented Elderly in Acute Human Postmortem Cortical Tissue

    Get PDF
    Microglia are the tissue-resident macrophages of the central nervous system (CNS). Recent studies based on bulk and single-cell RNA sequencing in mice indicate high relevance of microglia with respect to risk genes and neuro-inflammation in Alzheimer's disease (AD). Here, we investigated microglia transcriptomes at bulk and single-cell levels in non-demented elderly and AD donors using acute human postmortem cortical brain samples. We identified seven human microglial subpopulations with heterogeneity in gene expression. Notably, gene expression profiles and subcluster composition of microglia did not differ between AD donors and non-demented elderly in bulk RNA sequencing nor in single-cell sequencing

    Aging, microglia and cytoskeletal regulation are key factors in the pathological evolution of the APP23 mouse model for Alzheimer's disease

    Get PDF
    Aging is the key risk factor for Alzheimer's disease (AD). In addition, the amyloid-beta (A beta) peptide is considered a critical neurotoxic agent in AD pathology. However, the connection between these factors is unclear. We aimed to provide an extensive characterization of the gene expression profiles of the amyloidosis APP23 model for AD and control mice and to evaluate the effect of aging on these profiles. We also correlated our findings to changes in soluble A beta-levels and other pathological and symptomatic features of the model. We observed a clear biphasic expression profile. The first phase displayed a maturation profile, which resembled features found in young carriers of familial AD mutations. The second phase reflected aging processes and showed similarities to the progression of human AD pathology. During this phase, the model displayed a clear upregulation of microglial activation and lysosomal pathways and downregulation of neuron differentiation and axon guidance pathways. Interestingly, the changes in expression were all correlated to aging in general, but appeared more extensive/accelerated in APP23 mice. (C) 2016 Elsevier B.V. All rights reserved

    The HLA ligandome of oropharyngeal squamous cell carcinomas reveals shared tumour-exclusive peptides for semi-personalised vaccination

    Get PDF
    Background The immune peptidome of OPSCC has not previously been studied. Cancer-antigen specific vaccination may improve clinical outcome and efficacy of immune checkpoint inhibitors such as PD1/PD-L1 antibodies. Methods Mapping of the OPSCC HLA ligandome was performed by mass spectrometry (MS) based analysis of naturally presented HLA ligands isolated from tumour tissue samples (n = 40) using immunoaffinity purification. The cohort included 22 HPV-positive (primarily HPV-16) and 18 HPV-negative samples. A benign reference dataset comprised of the HLA ligandomes of benign haematological and tissue datasets was used to identify tumour-associated antigens. Results MS analysis led to the identification of naturally HLA-presented peptides in OPSCC tumour tissue. In total, 22,769 peptides from 9485 source proteins were detected on HLA class I. For HLA class II, 15,203 peptides from 4634 source proteins were discovered. By comparative profiling against the benign HLA ligandomic datasets, 29 OPSCC-associated HLA class I ligands covering 11 different HLA allotypes and nine HLA class II ligands were selected to create a peptide warehouse. Conclusion Tumour-associated peptides are HLA-presented on the cell surfaces of OPSCCs. The established warehouse of OPSCC-associated peptides can be used for downstream immunogenicity testing and peptide-based immunotherapy in (semi)personalised strategies

    A T-cell antigen atlas for meningioma: novel options for immunotherapy

    Full text link
    Meningiomas are the most common primary intracranial tumors. Although most symptomatic cases can be managed by surgery and/or radiotherapy, a relevant number of patients experience an unfavorable clinical course and additional treatment options are needed. As meningiomas are often perfused by dural branches of the external carotid artery, which is located outside the blood-brain barrier, they might be an accessible target for immunotherapy. However, the landscape of naturally presented tumor antigens in meningioma is unknown. We here provide a T-cell antigen atlas for meningioma by in-depth profiling of the naturally presented immunopeptidome using LC-MS/MS. Candidate target antigens were selected based on a comparative approach using an extensive immunopeptidome data set of normal tissues. Meningioma-exclusive antigens for HLA class I and II are described here for the first time. Top-ranking targets were further functionally characterized by showing their immunogenicity through in vitro T-cell priming assays. Thus, we provide an atlas of meningioma T-cell antigens which will be publicly available for further research. In addition, we have identified novel actionable targets that warrant further investigation as an immunotherapy option for meningioma

    The effects of postmortem delay on mouse and human microglia gene expression

    Get PDF
    Microglia are specialized macrophages of the central nervous system (CNS) and first to react to pathogens or injury. Over the last decade, transcriptional profiling of microglia significantly contributed to our understanding of their functions. In the case of human CNS samples, either potential CNS pathology in the case of surgery samples, or a postmortem delay (PMD) due to the time needed for tissue access and collection, are potential factors that affect gene expression profiles. To determine the effect of PMD on the microglia transcriptome, we first analyzed mouse microglia, where genotype, antemortem conditions and PMD can be controlled. Microglia were isolated from mice after different PMDs (0, 4, 6, 12, and 24 hr) using fluorescence-activated cell sorting (FACS). The number of viable microglia significantly decreased with increasing PMD, but even after a 12 hr PMD, high-quality RNA could be obtained. PMD had very limited effect on mouse microglia gene expression, only 50 genes were differentially expressed between different PMDs. These genes were related to mitochondrial, ribosomal, and protein binding functions. In human microglia transcriptomes we previously generated, 31 of the 50 PMD-associated mouse genes had human homologs, and their relative expression was also affected by PMD. This study provides a set of genes that shows relative expression changes in relation to PMD, both in mouse and human microglia. Although the gene expression changes detected are subtle, these genes need to be accounted for when analyzing microglia transcriptomes generated from samples with variable PMDs

    Epigenetic regulation of innate immune memory in microglia

    Get PDF
    Abstract Background Microglia are the tissue-resident macrophages of the CNS. They originate in the yolk sac, colonize the CNS during embryonic development and form a self-sustaining population with limited turnover. A consequence of their relative slow turnover is that microglia can serve as a long-term memory for inflammatory or neurodegenerative events. Methods Using ATAC-, ChIP- and RNA-sequencing, we characterized the epigenomes and transcriptomes of FACS-purified microglia from mice exposed to different stimuli. A repeated endotoxin challenge (LPS) was used to induce tolerance in microglia, while genotoxic stress (DNA repair deficiency-induced accelerated aging through Ercc1 deficiency) resulted in primed (hypersensitive) microglia. Results Whereas the enrichment of permissive epigenetic marks at enhancer regions could explain training (hyper-responsiveness) of primed microglia to an LPS challenge, the tolerized response of microglia seems to be regulated by loss of permissive epigenetic marks. We identify that inflammatory stimuli and accelerated aging as a result of genotoxic stress activate distinct gene networks. These gene networks and associated biological processes are partially overlapping, which is likely driven by specific transcription factor networks, resulting in altered epigenetic signatures and distinct functional (desensitized vs. primed) microglia phenotypes. Conclusion This study provides insight into epigenetic profiles and transcription factor networks associated with transcriptional signatures of tolerized and trained microglia in vivo, leading to a better understanding of innate immune memory of microglia.http://deepblue.lib.umich.edu/bitstream/2027.42/173699/1/12974_2022_Article_2463.pd
    corecore