17,099 research outputs found
Vortex-antivortex annihilation in mesoscopic superconductors with a central pinning center
In this work we solved the time-dependent Ginzburg-Landau equations, TDGL, to
simulate two superconducting systems with different lateral sizes and with an
antidot inserted in the center. Then, by cycling the external magnetic field,
the creation and annihilation dynamics of a vortex-antivortex pair was studied
as well as the range of temperatures for which such processes could occur. We
verified that in the annihilation process both vortex and antivortex acquire an
elongated format while an accelerated motion takes place.Comment: 4 pages, 5 figures, work presented in Vortex VII
Forest vintages and carbon sequestration
In the current paper we examine the role of forest carbon sequestration benefits in optimal forest management. When carbon benefits are considered not only the forested area is relevant, but also the flow of carbon between land and the atmosphere through the carbon cycle. To account for all these impacts a multi-vintage forest setting is used, following Salo and Tahvonen (2004). The model is extended to three different carbon accounting methods to measure the benefits form carbon sequestration: carbon flow regime, tonne-year crediting and average storage. In the case of the carbon flow regime, the impact on the optimal management and allocation of land will depend upon the amount of carbon released when the forest is harvested. Under the other two accounting systems optimal steady state forest area will be increased, and in cases where optimal management imply cyclical harvesting, considering carbon benefits will always increase cycles dimension.
Tightening the belt: Constraining the mass and evolution in SDC335
Recent ALMA observations identified one of the most massive star-forming
cores yet observed in the Milky Way; SDC335-MM1, within the infrared dark cloud
SDC335.579-0.292. Along with an accompanying core MM2, SDC335 appears to be in
the early stages of its star formation process. In this paper we aim to
constrain the properties of the stars forming within these two massive
millimetre sources. Observations of SDC335 at 6, 8, 23 and 25GHz were made with
the ATCA. We report the results of these continuum measurements, which combined
with archival data, allow us to build and analyse the spectral energy
distributions (SEDs) of the compact sources in SDC335. Three HCHII regions
within SDC335 are identified, two within the MM1 core. For each HCHII region, a
free-free emission curve is fit to the data allowing the derivation of the
sources' emission measure, ionising photon flux and electron density. Using
these physical properties we assign each HCHII region a ZAMS spectral type,
finding two protostars with characteristics of spectral type B1.5 and one with
a lower limit of B1-B1.5. Ancillary data from infrared to mm wavelength are
used to construct free-free component subtracted SEDs for the mm-cores,
allowing calculation of the bolometric luminosities and revision of the
previous gas mass estimates. The measured luminosities for the two mm-cores are
lower than expected from accreting sources displaying characteristics of the
ZAMS spectral type assigned to them. The protostars are still actively
accreting, suggesting that a mechanism is limiting the accretion luminosity, we
present the case for two different mechanisms capable of causing this. Finally,
using the ZAMS mass values as lower limit constraints, a final stellar
population for SDC335 was synthesised finding SDC335 is likely to be in the
process of forming a stellar cluster comparable to the Trapezium Cluster and
NGC6334 I(N).Comment: 10 pages, 5 figures. Accepted for publication in A&
Radiolysis of ammonia-containing ices by energetic, heavy and highly charged ions inside dense astrophysical environments
Deeply inside dense molecular clouds and protostellar disks, the interstellar
ices are protected from stellar energetic UV photons. However, X-rays and
energetic cosmic rays can penetrate inside these regions triggering chemical
reactions, molecular dissociation and evaporation processes. We present
experimental studies on the interaction of heavy, highly charged and energetic
ions (46 MeV Ni^13+) with ammonia-containing ices in an attempt to simulate the
physical chemistry induced by heavy ion cosmic rays inside dense astrophysical
environments. The measurements were performed inside a high vacuum chamber
coupled to the heavy ion accelerator GANIL (Grand Accelerateur National d'Ions
Lourds) in Caen, France.\textit{In-situ} analysis is performed by a Fourier
transform infrared spectrometer (FTIR) at different fluences. The averaged
values for the dissociation cross section of water, ammonia and carbon monoxide
due to heavy cosmic ray ion analogs are ~2x10^{-13}, 1.4x10^{-13} and
1.9x10^{-13} cm, respectively. In the presence of a typical heavy cosmic
ray field, the estimated half life for the studied species is 2-3x10^6 years.
The ice compaction (micropore collapse) due to heavy cosmic rays seems to be at
least 3 orders of magnitude higher than the one promoted by (0.8 MeV) protons .
In the case of the irradiated H2O:NH3:CO ice, the infrared spectrum at room
temperature reveals five bands that were tentatively assigned to vibration
modes of the zwitterionic glycine (+NH3CH2COO-).Comment: Accepted to be published in Astronomy and Astrophysics; Number of
pages: 12; Number of Figures: 7; Number of Tables:
Massive 70 micron quiet clumps I: evidence of embedded low/intermediate-mass star formation activity
Massive clumps, prior to the formation of any visible protostars, are the
best candidates to search for the elusive massive starless cores. In this work
we investigate the dust and gas properties of massive clumps selected to be 70
micron quiet, therefore good starless candidates. Our sample of 18 clumps has
masses 300 < M < 3000 M_sun, radius 0.54 < R < 1.00 pc, surface densities Sigma
> 0.05 g cm^-2 and luminosity/mass ratio L/M < 0.3. We show that half of these
70 micron quiet clumps embed faint 24 micron sources. Comparison with GLIMPSE
counterparts shows that 5 clumps embed young stars of intermediate stellar mass
up to ~5.5 M_sun. We study the clump dynamics with observations of N2H+ (1-0),
HNC (1-0) and HCO+ (1-0) made with the IRAM 30m telescope. Seven clumps have
blue-shifted spectra compatible with infall signatures, for which we estimate a
mass accretion rate 0.04 < M_dot < 2.0 x 10^-3 M_sun yr^-1, comparable with
values found in high-mass protostellar regions, and free-fall time of the order
of t_ff = 3 x 10^5 yr. The only appreciable difference we find between objects
with and without embedded 24 micron sources is that the infall rate appears to
increase from 24 micron dark to 24 micron bright objects. We conclude that all
70 micron quiet objects have similar properties on clump scales, independently
of the presence of an embedded protostar. Based on our data we speculate that
the majority, if not all of these clumps may already embed faint, low-mass
protostellar cores. If these clumps are to form massive stars, this must occur
after the formation of these lower mass stars.Comment: 44 pages, 11 Figures. Accepted for publication in MNRA
- …