21,243 research outputs found
The evolution of Giant Molecular Filaments
In recent years there has been a growing interest in studying giant molecular
filaments (GMFs), which are extremely elongated (> 100pc in length) giant
molecular clouds (GMCs). They are often seen as inter-arm features in external
spiral galaxies, but have been tentatively associated with spiral arms when
viewed in the Milky Way. In this paper, we study the time evolution of GMFs in
a high-resolution section of a spiral galaxy simulation, and their link with
spiral arm GMCs and star formation, over a period of 11Myrs. The GMFs generally
survive the inter-arm passage, although they are subject to a number of
processes (e.g. star formation, stellar feedback and differential rotation)
which can break the giant filamentary structure into smaller sections. The GMFs
are not gravitationally bound clouds as a whole, but are, to some extent,
confined by external pressure. Once they reach the spiral arms, the GMFs tend
to evolve into more substructured spiral arm GMCs, suggesting that GMFs may be
precursors to arm GMCs. Here, they become incorporated into the more complex
and almost continuum molecular medium that makes up the gaseous spiral arm.
Instead of retaining a clear filamentary shape, their shapes are distorted both
by their climb up the spiral potential and their interaction with the gas
within the spiral arm. The GMFs do tend to become aligned with the spiral arms
just before they enter them (when they reach the minimum of the spiral
potential), which could account for the observations of GMFs in the Milky Way.Comment: 15 pages, 11 figures, MNRAS accepte
A Method to Tackle First Order Differential Equations with Liouvillian Functions in the Solution - II
We present a semi-decision procedure to tackle first order differential
equations, with Liouvillian functions in the solution (LFOODEs). As in the case
of the Prelle-Singer procedure, this method is based on the knowledge of the
integrating factor structure.Comment: 11 pages, late
Solving 1ODEs with functions
Here we present a new approach to deal with first order ordinary differential
equations (1ODEs), presenting functions. This method is an alternative to the
one we have presented in [1]. In [2], we have establish the theoretical
background to deal, in the extended Prelle-Singer approach context, with
systems of 1ODEs. In this present paper, we will apply these results in order
to produce a method that is more efficient in a great number of cases.
Directly, the solving of 1ODEs is applicable to any problem presenting
parameters to which the rate of change is related to the parameter itself.
Apart from that, the solving of 1ODEs can be a part of larger mathematical
processes vital to dealing with many problems.Comment: 31 page
Thermodynamics of quark matter with a chiral imbalance
We show how a scheme of rewriting a divergent momentum integral can
conciliate results obtained with the Nambu--Jona-Lasinio model and recent
lattice results for the chiral transition in the presence of a chiral imbalance
in quark matter. Purely vacuum contributions are separated from
medium-dependent regularized momentum integrals in such a way that one is left
with ultraviolet divergent momentum integrals that depend on vacuum quantities
only. The scheme is applicable to other commonly used effective models to study
quark matter with a chiral imbalance, it allows us to identify the source of
their difficulties in reproducing the qualitative features of lattice results,
and enhances their predictability and uses in other applications.Comment: 6 pages, 2 figures. v2 PRD versio
- …
