16,999 research outputs found
Factors affecting rind pitting in the mandarin hybrids "fortune" and "nova". The influence of exogenous growth regulators
The commercialization of the mandarin hybrids "Fortune" and "Nova" is hindered by the development of cold-induced pitting in the fruit rind which may develop either in the orchard or during storage and transport.
In the late cropping cultivar "Fortune", the pitting develops on tree during the winter months and affects mainly the exposed fruit from the north-west quadrant of the tree. The induction of symptoms under uniform conditions in the cold-room reveals differences in the susceptibility to chilling injury among the fruits and the fruit sides. The green fruit is not susceptible. Susceptibility develops as pigmentation progresses, and it is higher for the exposed than for the non-exposed (covered by the foliage) fruits. The application of GA3 at colour-break delays pigmentation and retards the development of susceptibility. The waxing of the fruit offers some protection to cold in the cold-room. However, the incidence of pitting is not related to the wax content of the fruit rind and the application of a wax coverage on tree had only a marginal protective effect.
No pitting is usually found on tree in the fruit of the early ripening "Nova" cultivar, which is usually harvested before the winter chilling. The pitting develops during cold storage (8-10 C), and is reduced by GA3 application at colour break, an effect related to the delay in rind pigmentation.info:eu-repo/semantics/publishedVersio
Explaining Jupiter's magnetic field and equatorial jet dynamics
Spacecraft data reveal a very Earth-like Jovian magnetic field. This is
surprising since numerical simulations have shown that the vastly different
interiors of terrestrial and gas planets can strongly affect the internal
dynamo process. Here we present the first numerical dynamo that manages to
match the structure and strength of the observed magnetic field by embracing
the newest models for Jupiter's interior. Simulated dynamo action primarily
occurs in the deep high electrical conductivity region while zonal flows are
dynamically constrained to a strong equatorial jet in the outer envelope of low
conductivity. Our model reproduces the structure and strength of the observed
global magnetic field and predicts that secondary dynamo action associated to
the equatorial jet produces banded magnetic features likely observable by the
Juno mission. Secular variation in our model scales to about 2000 nT per year
and should also be observable during the one year nominal mission duration.Comment: 7 pages, 4 figures, accepted for publication in Geophysical Research
Letter
What controls the large-scale magnetic fields of M dwarfs?
Observations of active M dwarfs show a broad variety of large-scale magnetic
fields encompassing dipole-dominated and multipolar geometries. We detail the
analogy between some anelastic dynamo simulations and spectropolarimetric
observations of 23 M stars. In numerical models, the relative contribution of
inertia and Coriolis force in the global force balance -estimated by the
so-called local Rossby number- is known to have a strong impact on the magnetic
field geometry. We discuss the relevance of this parameter in setting the
large-scale magnetic field of M dwarfs.Comment: 4 pages, 3 figures, conference proceeding, IAUS 302 'Magnetic Fields
Throughout the Stellar Evolution', (26-30 Aug 2013, Biarritz, France
What controls the magnetic geometry of M dwarfs?
Context: observations of rapidly rotating M dwarfs show a broad variety of
large-scale magnetic fields encompassing dipole-dominated and multipolar
geometries. In dynamo models, the relative importance of inertia in the force
balance -- quantified by the local Rossby number -- is known to have a strong
impact on the magnetic field geometry. Aims: we aim to assess the relevance of
the local Rossby number in controlling the large-scale magnetic field geometry
of M dwarfs. Methods: we explore the similarities between anelastic dynamo
models in spherical shells and observations of active M-dwarfs, focusing on
field geometries derived from spectropolarimetric studies. To do so, we
construct observation-based quantities aimed to reflect the diagnostic
parameters employed in numerical models. Results: the transition between
dipole-dominated and multipolar large-scale fields in early to mid M dwarfs is
tentatively attributed to a Rossby number threshold. We interpret late M dwarfs
magnetism to result from a dynamo bistability occurring at low Rossby number.
By analogy with numerical models, we expect different amplitudes of
differential rotation on the two dynamo branches.Comment: 4 pages, 4 figures, accepted for publication in A&
A Method to Tackle First Order Differential Equations with Liouvillian Functions in the Solution - II
We present a semi-decision procedure to tackle first order differential
equations, with Liouvillian functions in the solution (LFOODEs). As in the case
of the Prelle-Singer procedure, this method is based on the knowledge of the
integrating factor structure.Comment: 11 pages, late
A unification in the theory of linearization of second order nonlinear ordinary differential equations
In this letter, we introduce a new generalized linearizing transformation
(GLT) for second order nonlinear ordinary differential equations (SNODEs). The
well known invertible point (IPT) and non-point transformations (NPT) can be
derived as sub-cases of the GLT. A wider class of nonlinear ODEs that cannot be
linearized through NPT and IPT can be linearized by this GLT. We also
illustrate how to construct GLTs and to identify the form of the linearizable
equations and propose a procedure to derive the general solution from this GLT
for the SNODEs. We demonstrate the theory with two examples which are of
contemporary interest.Comment: 8 page
- …