29 research outputs found

    Antimalarial Chemoprophylaxis for Forest Goers in Southeast Asia: An Open-Label, Individually Randomised Controlled Trial

    Get PDF
    Summary Background Malaria in the eastern Greater Mekong subregion has declined to historic lows. Countries in the Greater Mekong subregion are accelerating malaria elimination in the context of increasing antimalarial drug resistance. Infections are now increasingly concentrated in remote, forested foci. No intervention has yet shown satisfactory efficacy against forest-acquired malaria. The aim of this study was to assess the efficacy of malaria chemoprophylaxis among forest goers in Cambodia. Methods We conducted an open-label, individually randomized controlled trial in Cambodia, which recruited participants aged 16–65 years staying overnight in forests. Participants were randomly allocated 1:1 to antimalarial chemoprophylaxis, a 3-day course of twice-daily artemether–lumefantrine followed by the same daily dosing once a week while travelling in the forest and for a further 4 weeks after leaving the forest (four tablets per dose; 20 mg of artemether and 120 mg of lumefantrine per tablet), or a multivitamin with no antimalarial activity. Allocations were done according to a computer-generated randomization schedule, and randomization was in permuted blocks of size ten and stratified by village. Investigators and participants were not masked to drug allocation, but laboratory investigations were done without knowledge of allocation. The primary outcome was a composite endpoint of either clinical malaria with any Plasmodium species within 1–28, 29–56, or 57–84 days, or subclinical infection detected by PCR on days 28, 56, or 84 using complete-case analysis of the intention-to-treat population. Adherence to study drug was assessed primarily by self-reporting during follow-up visits. Adverse events were assessed in the intention-to-treat population as a secondary endpoint from self-reporting at any time, plus a physical examination and symptom questionnaire at follow-up. This trial is registered at ClinicalTrials.gov (NCT04041973) and is complete. Findings Between March 11 and November 20, 2020, 1,480 individuals were enrolled, of whom 738 were randomly assigned to artemether–lumefantrine and 742 to the multivitamin. 713 participants in the artemether–lumefantrine group and 714 in the multivitamin group had a PCR result or confirmed clinical malaria by rapid diagnostic test during follow-up. During follow-up, 19 (3%, 95% CI 2–4) of 713 participants had parasitaemia or clinical malaria in the artemether– lumefantrine group and 123 (17%, 15–20) of 714 in the multivitamin group (absolute risk difference 15%, 95% CI 12–18; p \u3c 0·0001). During follow-up, there were 166 malaria episodes caused by Plasmodium vivax, 14 by Plasmodium falciparum, and five with other or mixed species infections. The numbers of participants with P. vivax were 18 (3%, 95% CI 2–4) in the artemether–lumefantrine group versus 112 (16%, 13–19) in the multivitamin group (absolute risk difference 13%, 95% CI 10–16; p \u3c 0.0001). The numbers of participants with P. falciparum were two (0.3%, 95% CI 0.03–1.01) in the artemether–lumefantrine group versus 12 (1·7%, 0.9–2.9) in the multivitamin group (absolute risk difference 1·4%, 95% CI 0.4–2·4; p = 0.013). Overall reported adherence to the full course of medication was 97% (95% CI 96–98; 1,797 completed courses out of 1,854 courses started) in the artemether–lumefantrine group and 98% (97–98; 1,842 completed courses in 1,885 courses started) in the multivitamin group. Overall prevalence of adverse events was 1.9% (355 events in 18,806 doses) in the artemether–lumefantrine group and 1.1% (207 events in 19,132 doses) in the multivitamin group (p \u3c 0.0001). Interpretation Antimalarial chemoprophylaxis with artemether–lumefantrine was acceptable and well tolerated and substantially reduced the risk of malaria. Malaria chemoprophylaxis among high-risk groups such as forest workers could be a valuable tool for accelerating elimination in the Greater Mekong subregion

    Antimalarial chemoprophylaxis for forest goers in southeast Asia: an open-label, individually randomised controlled trial.

    Get PDF
    BackgroundMalaria in the eastern Greater Mekong subregion has declined to historic lows. Countries in the Greater Mekong subregion are accelerating malaria elimination in the context of increasing antimalarial drug resistance. Infections are now increasingly concentrated in remote, forested foci. No intervention has yet shown satisfactory efficacy against forest-acquired malaria. The aim of this study was to assess the efficacy of malaria chemoprophylaxis among forest goers in Cambodia. MethodsWe conducted an open-label, individually randomised controlled trial in Cambodia, which recruited participants aged 16-65 years staying overnight in forests. Participants were randomly allocated 1:1 to antimalarial chemoprophylaxis, a 3-day course of twice-daily artemether-lumefantrine followed by the same daily dosing once a week while travelling in the forest and for a further 4 weeks after leaving the forest (four tablets per dose; 20 mg of artemether and 120 mg of lumefantrine per tablet), or a multivitamin with no antimalarial activity. Allocations were done according to a computer-generated randomisation schedule, and randomisation was in permuted blocks of size ten and stratified by village. Investigators and participants were not masked to drug allocation, but laboratory investigations were done without knowledge of allocation. The primary outcome was a composite endpoint of either clinical malaria with any Plasmodium species within 1-28, 29-56, or 57-84 days, or subclinical infection detected by PCR on days 28, 56, or 84 using complete-case analysis of the intention-to-treat population. Adherence to study drug was assessed primarily by self-reporting during follow-up visits. Adverse events were assessed in the intention-to-treat population as a secondary endpoint from self-reporting at any time, plus a physical examination and symptom questionnaire at follow-up. This trial is registered at ClinicalTrials.gov (NCT04041973) and is complete. FindingsBetween March 11 and Nov 20, 2020, 1480 individuals were enrolled, of whom 738 were randomly assigned to artemether-lumefantrine and 742 to the multivitamin. 713 participants in the artemether-lumefantrine group and 714 in the multivitamin group had a PCR result or confirmed clinical malaria by rapid diagnostic test during follow-up. During follow-up, 19 (3%, 95% CI 2-4) of 713 participants had parasitaemia or clinical malaria in the artemether-lumefantrine group and 123 (17%, 15-20) of 714 in the multivitamin group (absolute risk difference 15%, 95% CI 12-18; p Interpretation Antimalarial chemoprophylaxis with artemether-lumefantrine was acceptable and well tolerated and substantially reduced the risk of malaria. Malaria chemoprophylaxis among high-risk groups such as forest workers could be a valuable tool for accelerating elimination in the Greater Mekong subregion

    Triple therapy with artemether-lumefantrine plus amodiaquine versus artemether-lumefantrine alone for artemisinin-resistant, uncomplicated falciparum malaria: an open-label, randomised, multicentre trial

    Get PDF
    Background: Late treatment failures after artemisinin-based combination therapies (ACTs) for falciparum malaria have increased in the Greater Mekong subregion in southeast Asia. Addition of amodiaquine to artemether-lumefantrine could provide an efficacious treatment for multidrug-resistant infections. Methods: We conducted an open-label, randomised trial at five hospitals or health centres in three locations (western Cambodia, eastern Cambodia, and Vietnam). Eligible participants were male and female patients aged 2-65 years with uncomplicated Plasmodium falciparum malaria. Patients were randomly allocated (1:1 in blocks of eight to 12) to either artemether-lumefantrine alone (dosed according to WHO guidelines) or artemether-lumefantrine plus amodiaquine (10 mg base per kg/day), both given orally as six doses over 3 days. All received a single dose of primaquine (0·25 mg/kg) 24 h after the start of study treatment to limit transmission of the parasite. Parasites were genotyped, identifying artemisinin resistance. The primary outcome was Kaplan-Meier 42-day PCR-corrected efficacy against recrudescence of the original parasite, assessed by intent-to-treat. Safety was a secondary outcome. This completed trial is registered at ClinicalTrials.gov (NCT03355664). Findings: Between March 18, 2018, and Jan 30, 2020, 310 patients received randomly allocated treatment; 154 received artemether-lumefantrine alone and 156 received artemether-lumefantrine plus amodiaquine. Parasites from 305 of these patients were genotyped. 42-day PCR-corrected treatment efficacy was noted in 151 (97%, 95% CI 92-99) of 156 patients with artemether-lumefantrine plus amodiaquine versus 146 (95%, 89-97) of 154 patients with artemether-lumefantrine alone; hazard ratio (HR) for recrudescence 0·6 (95% CI 0·2-1·9, p=0·38). Of the 13 recrudescences, 12 were in 174 (57%) of 305 infections with pfkelch13 mutations indicating artemisinin resistance, for which 42-day efficacy was noted in 89 (96%) of 93 infections with artemether-lumefantrine plus amodiaquine versus 73 (90%) of 81 infections with artemether-lumefantrine alone; HR for recrudescence 0·44 (95% CI 0·14-1·40, p=0·17). Artemether-lumefantrine plus amodiaquine was generally well tolerated, but the number of mild (grade 1-2) adverse events, mainly gastrointestinal, was greater in this group compared with artemether-lumefantrine alone (vomiting, 12 [8%] with artemether-lumefantrine plus amodiaquine vs three [2%] with artemether-lumefantrine alone, p=0·03; and nausea, 11 [7%] with artemether-lumefantrine plus amodiaquine vs three [2%] with artemether-lumefantrine alone, p=0·05). Early vomiting within 1 h of treatment, requiring retreatment, occurred in no patients of 154 with artemether-lumefantrine alone versus five (3%) of 156 with artemether-lumefantrine plus amodiaquine, p=0·06. Bradycardia (≤54 beats/min) of any grade was noted in 59 (38%) of 154 patients with artemether-lumefantrine alone and 95 (61%) of 156 with artemether-lumefantrine plus amodiaquine, p=0·0001. Interpretation: Artemether-lumefantrine plus amodiaquine provides an alternative to artemether-lumefantrine alone as first-line treatment for multidrug-resistant P falciparum malaria in the Greater Mekong subregion, and could prolong the therapeutic lifetime of artemether-lumefantrine in malaria-endemic populations

    High throughput biodiesel production from waste cooking oil over metal oxide binded with Fe2O3

    No full text
    This research investigated the effects of magnetic metal oxide catalysts and operating parameters on the transesterification of waste cooking oil to biodiesel in a continuous reaction setup. Ferric oxide (Fe2O3) was incorporated in alkaline oxide to provide magnetic characteristics, instead of using filters to capture catalysts within the heating zone. Biodiesel production was conducted in a packed glass tubular reactor under ultrasonication in a water bath. The reaction parameters included reaction temperature, amount of catalyst, residence time, and ultrasonic power. Three different catalysts were studied, including calcium oxide on Fe2O3, zinc oxide on Fe2O3, and magnesium oxide on Fe2O3. The results revealed that the biodiesel yield increased with increasing reaction temperature, amount of catalyst, residence time, and ultrasonic power. The optimized biodiesel yield of 94.3% was produced over calcium on Fe2O3 at 65 °C, the methanol-to-oil ratio of 11:1, the residence time of 6.2 min, and the ultrasonic power of 185 W. An increase of reaction temperature to 75 °C resulted in a decline in biodiesel yield to 91.3% due to methanol evaporation at higher temperatures. The catalytic stability was also tested at 60 °C, 6 wt% catalyst, and 185 W ultrasonic power. It was revealed that calcium oxide on Fe2O3 catalyst demonstrated superior catalytic stability with a biodiesel yield decrease of only 10% after 34 days on stream. This suggested the magnetic feature of the catalyst helped prevent leakage of the catalyst from the system. Moreover, the quality of biodiesel met the ASTM D6751 standard for transportation fuel

    Bio-oil production via fast pyrolysis of cassava residues combined with ethanol and volcanic rock in a free-fall reactor

    No full text
    AbstractPyrolysis of waste biomass to produce usable energy has the potential to, in part, alleviate the consumption of limited fossil fuel resources. We describe bio-oil production via fast pyrolysis of cassava residues, a mostly wasted byproduct of cassava crops. The waste biomass was combined with two readily available additives—volcanic rock and ethanol—in a free fall reactor to generate bio-oil, char and syngas. Using cassava stems as the raw feed-stock we tested pyrolysis reaction temperatures in the range 450–500 °C in a free fall reactor using a N2 flow. Analysis of the pyrolysis products should little variation in this range, so analyses for the effects of ethanol and volcanic rock as additives were tested at 500 °C. The bio-oil yield ranged between 58 and 60%, char represented 17–19% and gas 21–24%. With volcanic rock, the higher heating value was significantly higher at 23.6 MJ/kg compared to ~19 MJ/kg for cassava alone or added ethanol. Readily available, inexpensive, naturally occuring zeolites in the volcanic rock led to significant extra degradation of the biomass, under the same experimental conditions, leading to this improvement

    Polymorphisms in Plasmodium vivax antifolate resistance markers in Afghanistan between 2007 and 2017

    No full text
    BACKGROUND:Plasmodium vivax is the predominant Plasmodium species in Afghanistan. National guidelines recommend the combination of chloroquine and primaquine (CQ-PQ) for radical treatment of P. vivax malaria. Artesunate in combination with the antifolates sulfadoxine-pyrimethamine (SP) has been first-line treatment for uncomplicated falciparum malaria until 2016. Although SP has been the recommended treatment for falciparum and not vivax malaria, exposure of the P. vivax parasite population to SP might still have been quite extensive because of community based management of malaria. The change in the P. vivax antifolate resistance markers between 2007 and 2017 were investigated. METHODS:Dried blood spots were collected (n = 185) from confirmed P. vivax patients in five malaria-endemic areas of Afghanistan bordering Tajikistan, Turkmenistan and Pakistan, including Takhar, Faryab, Laghman, Nangarhar, and Kunar, in 2007, 2010 and 2017. Semi-nested PCR, RFLP and nucleotide sequencing were used to assess the pyrimethamine resistant related mutations in P. vivax dihydrofolate reductase (pvdhfr I13L, P33L, N50I, F57L, S58R, T61I, S93H, S117N, I173L) and the sulfonamide resistance related mutations in P. vivax dihydropteroate synthase (pvdhps A383G, A553G). RESULTS:In the 185 samples genotyped for pvdhfr and pvdhps mutations, 11 distinct haplotypes were observed, which evolved over time. In 2007, wild type pvdhfr and pvdhps were the most frequent haplotype in all study sites (81%, 80/99). However, in 2017, the frequency of the wild-type was reduced to 36%, (21/58; p value ≤ 0.001), with an increase in frequency of the double mutant pvdhfr and pvdhps haplotype S58RS117N (21%, 12/58), and the single pvdhfr mutant haplotype S117N (14%, 8/58). Triple and quadruple mutations were not found. In addition, pvdhfr mutations at position N50I (7%, 13/185) and the novel mutation S93H (6%, 11/185) were observed. Based on in silico protein modelling and molecular docking, the pvdhfr N50I mutation is expected to affect only moderately pyrimethamine binding, whereas the S93H mutation does not. CONCLUSIONS:In the course of ten years, there has been a strong increase in the frequency pyrimethamine resistance related mutations in pvdhfr in the P. vivax population in Afghanistan, although triple and quadruple mutations conferring high grade resistance were not observed. This suggests relatively low drug pressure from SP on the P. vivax parasite population in the study areas. The impact of two newly identified mutations in the pvdhfr gene on pyrimethamine resistance needs further investigation

    Polymorphisms in Plasmodium vivax antifolate resistance markers in Afghanistan between 2007 and 2017

    No full text
    BACKGROUND:Plasmodium vivax is the predominant Plasmodium species in Afghanistan. National guidelines recommend the combination of chloroquine and primaquine (CQ-PQ) for radical treatment of P. vivax malaria. Artesunate in combination with the antifolates sulfadoxine-pyrimethamine (SP) has been first-line treatment for uncomplicated falciparum malaria until 2016. Although SP has been the recommended treatment for falciparum and not vivax malaria, exposure of the P. vivax parasite population to SP might still have been quite extensive because of community based management of malaria. The change in the P. vivax antifolate resistance markers between 2007 and 2017 were investigated. METHODS:Dried blood spots were collected (n = 185) from confirmed P. vivax patients in five malaria-endemic areas of Afghanistan bordering Tajikistan, Turkmenistan and Pakistan, including Takhar, Faryab, Laghman, Nangarhar, and Kunar, in 2007, 2010 and 2017. Semi-nested PCR, RFLP and nucleotide sequencing were used to assess the pyrimethamine resistant related mutations in P. vivax dihydrofolate reductase (pvdhfr I13L, P33L, N50I, F57L, S58R, T61I, S93H, S117N, I173L) and the sulfonamide resistance related mutations in P. vivax dihydropteroate synthase (pvdhps A383G, A553G). RESULTS:In the 185 samples genotyped for pvdhfr and pvdhps mutations, 11 distinct haplotypes were observed, which evolved over time. In 2007, wild type pvdhfr and pvdhps were the most frequent haplotype in all study sites (81%, 80/99). However, in 2017, the frequency of the wild-type was reduced to 36%, (21/58; p value ≤ 0.001), with an increase in frequency of the double mutant pvdhfr and pvdhps haplotype S58RS117N (21%, 12/58), and the single pvdhfr mutant haplotype S117N (14%, 8/58). Triple and quadruple mutations were not found. In addition, pvdhfr mutations at position N50I (7%, 13/185) and the novel mutation S93H (6%, 11/185) were observed. Based on in silico protein modelling and molecular docking, the pvdhfr N50I mutation is expected to affect only moderately pyrimethamine binding, whereas the S93H mutation does not. CONCLUSIONS:In the course of ten years, there has been a strong increase in the frequency pyrimethamine resistance related mutations in pvdhfr in the P. vivax population in Afghanistan, although triple and quadruple mutations conferring high grade resistance were not observed. This suggests relatively low drug pressure from SP on the P. vivax parasite population in the study areas. The impact of two newly identified mutations in the pvdhfr gene on pyrimethamine resistance needs further investigation

    Polymorphisms in Pvkelch12 and gene amplification of Pvplasmepsin4 in plasmodium vivax from Thailand, Lao PDR and Cambodia

    No full text
    Background Mutations in Pfkelch13 and Pfplasmepsin2/3 gene amplification are well-established markers for artemisinin and piperaquine resistance in Plasmodium falciparum, a widespread problem in the Greater Mekong Subregion (GMS). The Plasmodium vivax parasite population has experienced varying drug pressure dependent on local drug policies. We investigated the correlation between drug pressure from artemisinins and piperaquine and mutations in the P. vivax orthologous genes Pvkelch12 and Pvplasmepsin4 (Pvpm4), as candidate resistance markers. Methods Blood samples from 734 P. vivax patients were obtained from Thailand (n = 399), Lao PDR (n = 296) and Cambodia (n = 39) between 2007 and 2017. Pvkelch12 and Pvpm4 was amplified and sequenced to assess gene mutations. To assess PvPM4 gene amplification, a Taqman® Real-Time PCR method was developed and validated. Selection of non-synonymous mutations was assessed by its ratio with synonymous mutations (Ka/Ks ratios). Mutation rates were compared to the estimated local drug pressure. Results Polymorphisms in Pvkelch12 were rare. Pvkelch12 mutations V552I, K151Q and M124I were observed in 1.0% (7/734) of P. vivax samples. V552I was the most common mutation with a frequency of 0.7% (5/734), most of which (4/5) observed in Ubon Ratchathani, Thailand. Polymorphisms in Pvpm4 were more common, with a frequency of 40.3% (123/305) in 305 samples from Thailand, Lao PDR and Cambodia, but this was not related to the estimated piperaquine drug pressure in these areas (Pearson’s χ2 test, p = 0.50). Pvpm4 mutation V165I was most frequent in Tak, Thailand (40.2%, 43/107) followed by Pailin, Cambodia (43.5%, 37/85), Champasak, Lao PDR (40.4%, 23/57) and Ubon Ratchathani, Thailand (35.7%, 20/56). Pvpm4 amplification was not observed in 141 samples from Thailand and Cambodia. For both Pvkelch12 and Pvpm4, in all areas and at all time points, the Ka/Ks values were < 1, suggesting no purifying selection. Conclusions A novel real-time PCR-based method to assess P. vivax Pvpm4 gene amplification was developed. Drug pressure with artemisinins and piperaquine in the GMS was not clearly related to signatures of selection for mutations in the P. vivax orthologous resistance genes Pvkelch12 and Pvpm4 in areas under investigation. Current resistance of P. vivax to these drugs is unlikely and additional observations including analysis of associated clinical data from these regions could further clarify current findings

    Resolving the cause of recurrent Plasmodium vivax malaria probabilistically

    No full text
    Relapses arising from dormant liver-stage Plasmodium vivax parasites (hypnozoites) are a major cause of vivax malaria. However, in endemic areas, a recurrent blood-stage infection following treatment can be hypnozoite-derived (relapse), a blood-stage treatment failure (recrudescence), or a newly acquired infection (reinfection). Each of these requires a different prevention strategy, but it was not previously possible to distinguish between them reliably. We show that individual vivax malaria recurrences can be characterised probabilistically by combined modelling of time-to-event and genetic data within a framework incorporating identity-by-descent. Analysis of pooled patient data on 1441 recurrent P. vivax infections in 1299 patients on the Thailand-Myanmar border observed over 1000 patient follow-up years shows that, without primaquine radical curative treatment, 3 in 4 patients relapse. In contrast, after supervised high-dose primaquine only 1 in 40 relapse. In this region of frequent relapsing P. vivax, failure rates after supervised high-dose primaquine are significantly lower (∼3%) than estimated previously

    Polymorphisms in Pvkelch12 and gene amplification of Pvplasmepsin4 in plasmodium vivax from Thailand, Lao PDR and Cambodia

    No full text
    Background Mutations in Pfkelch13 and Pfplasmepsin2/3 gene amplification are well-established markers for artemisinin and piperaquine resistance in Plasmodium falciparum, a widespread problem in the Greater Mekong Subregion (GMS). The Plasmodium vivax parasite population has experienced varying drug pressure dependent on local drug policies. We investigated the correlation between drug pressure from artemisinins and piperaquine and mutations in the P. vivax orthologous genes Pvkelch12 and Pvplasmepsin4 (Pvpm4), as candidate resistance markers. Methods Blood samples from 734 P. vivax patients were obtained from Thailand (n = 399), Lao PDR (n = 296) and Cambodia (n = 39) between 2007 and 2017. Pvkelch12 and Pvpm4 was amplified and sequenced to assess gene mutations. To assess PvPM4 gene amplification, a Taqman® Real-Time PCR method was developed and validated. Selection of non-synonymous mutations was assessed by its ratio with synonymous mutations (Ka/Ks ratios). Mutation rates were compared to the estimated local drug pressure. Results Polymorphisms in Pvkelch12 were rare. Pvkelch12 mutations V552I, K151Q and M124I were observed in 1.0% (7/734) of P. vivax samples. V552I was the most common mutation with a frequency of 0.7% (5/734), most of which (4/5) observed in Ubon Ratchathani, Thailand. Polymorphisms in Pvpm4 were more common, with a frequency of 40.3% (123/305) in 305 samples from Thailand, Lao PDR and Cambodia, but this was not related to the estimated piperaquine drug pressure in these areas (Pearson’s χ2 test, p = 0.50). Pvpm4 mutation V165I was most frequent in Tak, Thailand (40.2%, 43/107) followed by Pailin, Cambodia (43.5%, 37/85), Champasak, Lao PDR (40.4%, 23/57) and Ubon Ratchathani, Thailand (35.7%, 20/56). Pvpm4 amplification was not observed in 141 samples from Thailand and Cambodia. For both Pvkelch12 and Pvpm4, in all areas and at all time points, the Ka/Ks values were < 1, suggesting no purifying selection. Conclusions A novel real-time PCR-based method to assess P. vivax Pvpm4 gene amplification was developed. Drug pressure with artemisinins and piperaquine in the GMS was not clearly related to signatures of selection for mutations in the P. vivax orthologous resistance genes Pvkelch12 and Pvpm4 in areas under investigation. Current resistance of P. vivax to these drugs is unlikely and additional observations including analysis of associated clinical data from these regions could further clarify current findings
    corecore