63 research outputs found

    Changes in co-existence mechanisms along a long-term soil chronosequence revealed by functional trait diversity

    Get PDF
    1. Functional trait diversity can reveal mechanisms of species co-existence in plant communities. Few studies have tested whether functional diversity for foliar traits related to resource use strategy increases or decreases with declining soil phosphorus (P) in forest communities. 2. We quantified tree basal area and four foliar functional traits (i.e. nitrogen (N), phosphorus (P), thickness and tissue density) for all woody species along the c. 120 kyr Franz Josef soil chronosequence in cool temperate rainforest, where strong shifts occur in light and soil nutrient availability (i.e. total soil P declines from 805 to 100 mg g–1). We combined the abundance and trait data in functional diversity indices to quantify trait convergence and divergence, in an effort to determine whether mechanisms of co-existence change with soil fertility. 3. Relationships between species trait means and total soil N and P were examined using multiple regression, with and without weighting of species abundances. We used Rao’s quadratic entropy to quantify functional diversity at the plot scale, then compared this with random expectation, using a null model that randomizes abundances across species within plots. Taxonomic diversity was measured using Simpson’s Diversity. Relationships between functional and taxonomic diversity and total soil P were examined using jackknife linear regression. 4. Leaf N and P declined and leaf thickness and density increased monotonically with declining total soil P along the sequence; these relationships were unaffected by abundance-weighting of species in the analyses. Inclusion of total soil N did not improve predictions of trait means. All measures of diversity calculated from presence/absence data were unrelated to total soil N and P. There was no evidence for a relationship between Rao values using quantitative abundances and total soil P. However, there was a strongly positive relationship between Rao, expressed relative to random expectation, and total soil P, indicating trait convergence of dominant species as soil P declined. 5. Synthesis: Our results demonstrate that at high fertility dominant species differ in resource use strategy, but as soil fertility declines over the long-term, dominant species increasingly converge on a resource-retentive strategy. This suggests that differentiation in resource use strategy is required for co-existence at high fertility but not in low fertility ecosystems

    Non-Native Plants Disrupt Dual Promotion of Native Alpha and Beta Diversity

    Get PDF
    Abstract Non-native species can alter patterns of species diversity at multiple spatial scales, but the processes that underlie multi-scale effects remain unclear. Here we show that non-native species reduce native diversity at multiple scales through simultaneous disruption of two processes of native community assembly: species immigration, which enhances alpha diversity, and community divergence, which enhances beta diversity. Community divergence refers to the process in which local communities diverge over time in species composition because the history of species immigration and, consequently, the way species affect one another within communities are variable among communities. Continuous experimental removal of species over four years of floodplain succession revealed that, when non-native species were excluded, stochastic variation in the timing of a dominant native species' arrival allowed local communities to diverge, thereby enhancing beta diversity, without compromising promotion of alpha diversity by species immigration. In contrast, when non-native species were allowed to enter experimental plots, they not only reduced native alpha diversity by limiting immigration, but also diminished the dominant native species' role in enhancing native beta diversity. Our results highlight the importance of community assembly and succession for understanding multi-scale effects of non-native species

    Belowground competition drives invasive plant impact on native species regardless of nitrogen availability

    Get PDF
    Plant invasions and eutrophication are pervasive drivers of global change that cause biodiversity loss. Yet, how invasive plant impacts on native species, and the mechanisms underpinning these impacts, vary in relation to increasing nitrogen (N) availability remains unclear. Competition is often invoked as a likely mechanism, but the relative importance of the above and belowground components of this is poorly understood, particularly under differing levels of N availability. To help resolve these issues, we quantified the impact of a globally invasive grass species, Agrostis capillaris, on two co-occurring native New Zealand grasses, and vice versa. We explicitly separated above- and belowground interactions amongst these species experimentally and incorporated an N addition treatment. We found that competition with the invader had large negative impacts on native species growth (biomass decreased by half), resource capture (total N content decreased by up to 75%) and even nutrient stoichiometry (native species tissue C:N ratios increased). Surprisingly, these impacts were driven directly and indirectly by belowground competition, regardless of N availability. Higher root biomass likely enhanced the invasive grass’s competitive superiority belowground, indicating that root traits may be useful tools for understanding invasive plant impacts. Our study shows that belowground competition can be more important in driving invasive plant impacts than aboveground competition in both low and high fertility ecosystems, including those experiencing N enrichment due to global change. This can help to improve predictions of how two key drivers of global change, plant species invasions and eutrophication, impact native species diversity

    Soil biotic and abiotic effects on seedling growth exhibit context-dependent interactions: evidence from a multi-country experiment on Pinus contorta invasion

    Get PDF
    The success of invasive plants is influenced by many interacting factors, but evaluating multiple possible mechanisms of invasion success and elucidating the relative importance of abiotic and biotic drivers is challenging, and therefore rarely achieved.We used live, sterile or inoculated soil from different soil origins (native range and introduced range plantation; and invaded plots spanning three different countries) in a fully factorial design to simultaneously examine the influence of soil origin and soil abiotic and biotic factors on the growth of invasive Pinus contorta.Our results displayed significant context dependency in that certain soil abiotic conditions in the introduced ranges (soil nitrogen, phosphorus or carbon content) influenced responses to inoculation treatments.Our findings do not support the enemy release hypothesis or the enhanced mutualism hypothesis, as biota from native and plantation ranges promoted growth similarly. Instead, our results support the missed mutualism hypothesis, as biota from invasive ranges were the least beneficial for seedling growth. Our study provides a novel perspective on how variation in soil abiotic factors can influence plant-soil feedbacks for an invasive tree across broad biogeographical contexts

    Hailstorm damage promotes aspen invasion into grassland

    No full text
    Global warming is widely thought to promote the dominance of grasslands over woody vegetation, and shift the location of ecotones. In contrast, forest vegetation along the northern edge of the North American Great Plains has migrated southward over the past century into areas dominated by native grassland. Because climate change is also predicted to increase storm frequency and intensity, we quantified the impacts of an intense hailstorm on woody and herbaceous species in native grassland in the northern Great Plains of North America. The hailstorm disturbance killed or damaged mature stems of the dominant tree, aspen (Populus tremuloides Michx.), but damaged aspen stands subsequently invaded ca. 10m into neighbouring grassland. Damaged aspen stands also produced up to 20-fold more new stems having 67-fold higher total biomass compared with relatively undisturbed stands. Grasses and lichens suffered much higher rates of biomass removal (60%-76%) than did shrubs (6%-8%) immediately following the storm. The disturbance-mediated recruitment of clonal woody plants, and the unexpected sensitivity of grasses and lichens to this disturbance, may contribute to the counterintuitive expansion of trees into grasslands under a regime of increased storm frequency that is not predicted by simple ecosystem responses to warming
    • …
    corecore